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EXECUTIVE SUMMARY 
 

 

Travel time reliability (TTR) is an important measure which has been widely used to represent 

the traffic conditions on freeways. Accurately modeling travel time reliability is very important 

for both transportation agencies and roadway users. Nowadays anonymous vehicle probe data 

have been greatly improved in both data coverage and data fidelity, and thus have become a 

reliable source for freeway travel time reliability analysis. However, in most cases, TTR data are 

analyzed at the segment level in the short-term, which may not be able to account for the TTR 

variability characteristics for the whole section in the long-term. The goal of this project is to 

develop a systematic approach to analyzing TTR of roadway segments along a corridor in the 

long-term. Specific objectives are to: 1) Select the most appropriate TTR measure, 2) Select 

typical segments based on historical TTR ratings, and 3) Analyze the TTR of selected segments 

with the consideration of time of day, day of week, year and weather, and 4) Predict the TTR and 

compare it with the ground truth data.  

To achieve the goal, a comprehensive review of the literature is conducted and previous 

experience in determining factors influencing TTR is carefully examined and synthesized. A list 

of candidate TTR measures are also identified, evaluated and compared. The most appropriate 

TTR measure is selected for use in the TTR analysis. A number of influential factors are 

considered when analyzing TTR, which include, but are not limited to, time of day, day of week, 

year, segment location and weather. Finally, a simple linear regression model and a time-series 

model are developed and used to predict the TTR on a freeway corridor. This report focuses on 

the long-term travel time reliability analysis and intends to present data analysis results to help 

transportation planners make informed decisions. 
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Chapter 1.  Introduction 

1.1 Problem Statement 

Travel time reliability (TTR) is an important measure which has been widely used to 

represent the traffic conditions on freeways. Accurately modeling travel time reliability is very 

important for both transportation agencies and road users. Nowadays anonymous vehicle probe 

data have been greatly improved in both data coverage and data fidelity, and thus have become a 

reliable source for freeway travel time reliability analysis. However, in most cases, TTR data are 

analyzed at the segment level in the short-term, which may not be able to account for the TTR 

variability characteristics for the whole section in the long-term. The goal of this project is to 

develop a systematic approach to analyzing TTR of roadway segments along a corridor in the 

long-term. To do so, a number of influential factors will be considered when analyzing TTR in 

this project.  

1.2 Motivation of Study 

The purpose of this project is to develop a systematic approach to illustrating how TTR 

distributes and varies with respect to time of day, day of week, year, and weather. Case studies 

are conducted to present different TTR variability patterns under different conditions. The 

analysis of TTR and the prediction methodology can also greatly help the decision makers plan, 

design, operate, and manage a more efficient highway system.  

1.3 Objectives of Study 

Specific objectives are to: 1) Select the most appropriate TTR measure, 2) Select typical 

segments based on historical TTR ratings, and 3) Analyze the TTR of selected segments with the 

consideration of time of day, day of week, year and weather, and 4) Predict the TTR and 

compare it with the ground truth data. This report focuses on the long-term travel time reliability 

analysis step by step and to present data analysis results to help the transit planners make 

informed decisions. 

1.4 Report Overview 

The remainder of this report is organized as follows: Chapter 2 provides general 

information about TTR, including several definitions of TTR and a list of TTR measures. This 

chapter also reviews the previous research studies on TTR analysis, including those on the basis 

of travel time distribution, those at the network level, those with the consideration of 

incidents/weather and those with the consideration of multiple influencing factors. Chapter 3 

presents data preparation and processing steps. It starts with a primary analysis of the probe 

vehicle data of the select Interstate-77 segments in Charlotte, NC. The weather data information 

and the process to combine these two datasets are also discussed. Chapter 4 presents the TTR 

variability pattern analysis. The selection of TTR measures is discussed first. This is followed by 

the study location identification. The analysis of long-term TTR variability pattern with the 

consideration of day of weak and weather is then discussed. Chapter 5 discusses the prediction of 

TTR. It starts with a brief introduction of the linear regression model and the time-series model 

used in this study. The prediction results on each select segment are then described. Chapter 6 
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concludes the report with a summary of the findings and some discussions about possible 

improvements to enhance current practices. Future research directions are also given. 
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Chapter 2.  Literature Review 

2.1 Introduction 

This chapter provides a comprehensive review of various aspects related to TTR studies, 

including TTR definitions, existing TTR measures, TTR modeling methodologies, etc. This 

should give a clear picture of existing concepts of TTR, the advantages and disadvantages of 

various TTR measures, and current efforts toward the modeling of TTR. 

The following sections are organized as follows. Section 2.2 presents several definitions 

of TTR, followed by the presentation of a list of TTR measures in section 2.3. Section 2.4 gives a 

comprehensive review of existing methods of TTR analysis, which include travel time 

distribution-based studies, network level TTR studies, TTR analysis with the consideration of 

incidents/weather studies and TTR analysis with the consideration of multiple influencing 

factors. Finally, section 2.5 concludes this chapter with a summary. 

 

2.2 Travel Time Reliability Definitions 

Different definitions of travel time reliability have been developed in different studies. It 

will be helpful to review the existing definitions in different studies to clarify the concept of 

travel time reliability and its measurement. This section briefly reviews existing ‘reliability’ and 

‘travel time reliability’ definitions. Table 2.1 provides a summary of existing travel time 

reliability definitions in chronological order. 

Charles (1997) defined reliability as “the probability that a component or system will 

perform a required function for a given period of time when used under stated operating 

conditions. It is the probability of a non-failure over time.” This definition is similar to the other 

definitions used in reliability engineering (Elefteriadou and Cui, 2007). 

In the transportation area, there are several different definitions of reliability developed 

including system reliability, travel time reliability and network reliability. Turner et al. (1996) 

defined trip time reliability as the range of travel times experienced during a large number of 

daily trips. This definition considered the range of travel times. However, this study did not 

specify when ‘failure’ has occurred. In addition, it did not provide a good assessment of “actual 

operating conditions, the presence and duration of congestion, or the percent of time the facility 

operates as expected.” 

NCHRP report 398 (1997) defined travel time reliability as “the impact of non-recurrent 

congestion on the transportation system.” In NCHRP report 399 (1998), travel time reliability 

was defined as “a measure of the variability of travel time”. California Transportation Plan 

(1998) defined reliability as “the level of variability between the expected travel time and the 

actual travel time experienced.” Florida DOT (2011) defined the reliability on a highway 

segment as “the percent of travel that takes no longer than the expected travel time plus a certain 

acceptable additional time.” They also defined three major components of reliability: travel time, 

expected travel time, and acceptable additional time. AASHTO’s freight report (2002) defined 
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reliability as “the percent of on-time performance for a given time schedule”, and this definition 

was provided for freight transportation. Recker et al. (2004) defined both path and Origin-

Destination (OD) travel time reliability. Specifically, the path travel time reliability was defined 

as “the probability that the travel time of a given path is within an acceptable threshold” and the 

OD travel time reliability was defined as “the probability that the weighted average travel time 

of a given OD pair is within an acceptable threshold.” 

The Federal Highway Administration (FHWA) (2012) gave a formal definition of travel 

time reliability, which is: “the consistency or dependability in travel times, as measured from 

day-to-day and/or across different times of the day.” SHRP 2 Project (2014) defined travel time 

reliability as “the variability in travel times that occur on a facility or for a trip over the course 

of time; and the number of times (trips) that either “fail” or “succeed” in accordance with a 

predetermined performance standard or schedule.” 

Table 2.1: Summary of Existing Travel Time Reliability Definitions 

Author/Agency Year Reliability/Travel Time Reliability Definition 

Turner et al. 1996 The range of travel times experienced during a large number of daily trips. 

Charles 1997 The probability that a component or system will perform a required 

function for a given period of time when used under stated operating 

conditions. It is the probability of a non-failure over time. 

NCHRP Report 398 1997 The impact of non-recurrent congestion on the transportation system. 

NCHRP Report 399 1998 A measure of the variability of travel time. 

California 

Transportation Plan 

1998 The level of variability between the expected travel time and the actual 

travel time experienced. 

AASHTO’s Freight 

Report 

2002 The percent of on-time performance for a given time schedule. 

Elefteriadou and 

Cui 

2007 The probability of a device performing its purpose adequately for the 

period of time intended under the stated operating conditions. 

Florida DOT 2011 The percent of travel that takes no longer than the expected travel time plus 

a certain acceptable additional time. 

FHWA 2012 The consistency or dependability in travel times, as measured from day-to-

day and/or across different times of the day 

Vandervalk et al. 

(SHRP 2 project) 

2014 The variability in travel times that occur on a facility or for a trip over the 

course of time; and the number of times (trips) that either “fail” or 

“succeed” in accordance with a predetermined performance standard or 

schedule 
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2.3 Travel Time Reliability Measures 

This section introduces the characteristics of different travel time reliability measures. 

Table 2.2 provides a summary of the TTR measures discussed in this section in chronological 

order. 

2.3.1 Basic Statistics Measures 

(1) Standard Deviation 

Standard deviation is a well-defined classical statistical measure and usually used as a proxy 

for other reliability measures (Charles, 1997). However, the use of standard deviation as a 

reliability performance measure was discouraged by some studies (U.S. DOT guide, 1996 

and NCHRP Report 618, 2008) because “it is not easily understood by nontechnical 

audiences nor easily related to everyday commuting experiences, and it treats early and late 

arrivals with equal weight, whereas the public cares much more about late arrival.” 

(2) Coefficient of Variation (CV) 

The average travel time and standard deviation values can be combined and used to generate 

a value which is called coefficient of variation (CV). The CV is calculated as the ratio of the 

standard deviation to the mean. The use of CV is also discouraged by some studies with the 

same concern as about the usage of standard deviation. However, it still being utilized by 

some researchers. 

CV =  
Standard deviation

Average travel time
 

(3) Percent Variation 

The average travel time and standard deviation values can also be combined in a ratio to 

produce a value that was recommended by the 1998 California Transportation Plan. 

Percent variation =  
Standard deviation

Average travel time
 × 100% = CV ×  100%   

This measure has the same mathematical characteristics as the CV. However, it is easier for 

the public to understand percent variation as it is expressed as a percentage of average travel 

time. This measure was adopted by the 1998 California Transportation Plan (1998) and 

recommended by Lomax et al. (1997) and NCHRP Report 618 (2008). 

 (4) Variability Index 

The variability index is a ratio of peak to off-peak variation in travel conditions. The index is 

calculated as “a ratio of the difference in the upper and lower 95% confidence intervals 

between the peak period and the off-peak period” (Lomax et al., 1997 and Florida DOT, 

2011).  
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Variability Index =  
Difference in peak period confidence intervals

Difference in off peak period confidence intervals
 

Because the interval differences in the off-peak periods are usually lower than the differences 

in the peak period, the value of variability index is usually greater than 1. 

2.3.2 FHWA TTR Measures 

There are four TTR measures introduced and recommended by FHWA. 

(5) 90th/95th Percentile Travel Times  

90th/95th percentile travel times are both basic TTR measures which have been widely used 

in the world. These indexes indicate how much delay will be on the heaviest travel days and 

were introduced as one of the four recommended travel time reliability measures by FHWA. 

The 90th or 95th percentile travel times are usually reported in minutes and seconds. They 

could be easily understood by roadway users who are familiar with their trips. 

However, the disadvantage of this measure is “not being easily compared across trips with 

the consideration of different trip lengths.” It is also difficult to combine route travel times 

into a citywide average.  

(6) Buffer Index (BI)  

Buffer index (BI) represents the extra time required by the travelers to arrive on time in 

addition to the travel time under average conditions and was introduced as one of the four 

recommended measures by FHWA. This extra time is added to account for any unexpected 

delay. The BI is expressed as a percentage, and its value increases as reliability gets worse. 

Traditionally, arithmetic average travel time is used to represent the travel time under 

average conditions, and the BI is defined by the difference between the 95th percentile travel 

time and the average travel time. For example, to ensure on-time arrival, a BI of 50 percent 

means that, for a 30-minute average travel time, a traveler should budget an additional 15 

minutes (30 minutes × 50% = 15 minutes). 15 minutes here is called the buffer time. The BI 

is computed as the difference between the 95th percentile travel time and average travel time, 

divided by the average travel time. The equation is shown below:  

BI =  
95th percentile time − average travel time

average travel time
× 100% 

A recent SHRP 2 report suggested that the median travel time can also be used to define the 

BI (Vandervalk et al., 2014). 

(7) Planning Time Index (PTI)  

Planning time index (PTI) was also introduced as one of the four recommended measures by 

FHWA. It represents the total time needed to plan for an on-time arrival 95% of the time 

(total travel time that should be planned when an adequate buffer time is included), 

https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm#buffer
https://ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.htm#planning
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computed as 95th percentile travel time divided by free-flow travel time. The equation is 

presented below: 

PTI =  
95th percentile travel time

free flow travel time
 

The PTI differs from the BI and it compares near-worst case travel time with that under free-

flow traffic condition. For example, a PTI of 1.50 means that, for a 20-minute trip under light 

traffic condition, the total time that should be planned for the trip is 30 minutes (20 minutes × 

1.50 = 30 minutes). PTI is a useful measure as it can be directly combined and used with the 

travel time index. 

(8) Frequency of Congestion (FOC) 

Frequency of congestion (FOC) is a measure introduced as one of the four recommended 

travel time reliability measures by FHWA, which represents the frequency of congestion 

exceeding some expected threshold. It can be typically expressed as the percent of days/time 

that travel times exceed a time threshold x or travel speeds fall below a speed threshold y. 

The FOC is relatively easy to compute if continuous traffic data are available, and it is 

typically reported on weekdays during peak traffic periods. 

2.3.3 Other Measures 

 

(9) Skew of travel time distribution 

The skew statistics is a robust measure introduced by Van Lint and Van Zuylen (2005). It is 

defined as the ratio of the difference between the 90th percentile travel time and the median 

and the difference between the median and the 10th percentile travel time. The equation is 

given below: 

λ𝑠𝑘𝑒𝑤 =  
T90 − T50

T50 − T10
 

 

(10) Width of travel time distribution 

The width statistics is a robust measure introduced by Van Lint and Van Zuylen (2005). It is 

defined as the ratio of the difference between the 90th percentile travel time and the 10th 

percentile travel time and median travel time. The equation is shown below: 

λ𝑤𝑖𝑑𝑡ℎ =  
T90 − T10

T50
 

(11) Misery index 

Misery Index is a measure that can indicate the length of delay of only the worst trips. It is 

usually computed by subtracting the average travel rate from the upper 20 percent of travel 
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rates. This yields the time difference between the average trip and the slowest 20 percent of 

trips. The equation is below: 

Misery index =  
Average travel rate (Top 20% trips)

Average travel rate
− 1 

Table 2.2: Summary of Travel Time Reliability Measures 

Measure Author/Agency Equation 

Standard deviation 
Dowling et al. 

(2009); Pu (2011) 
Standard deviation 

Coefficient of 

variation 
Pu (2011) Coefficient variation =  

Standard deviation

Average travel time
 

Present variation 

1998 California 

Transportation Plan; 

Lomax et al. (1997); 

NCHRP Report 618 

(2008) 

Percent variation =  
Standard deviation

Average travel time
 × 100% 

Variability Index 
Lomax et al. (1997); 

Albert (2000) 

Difference in peak period confidence intervals

Difference in off peak period confidence intervals
 

90th/95th 

Percentile Travel 

Times: 

FHWA 90th/95th Percentile Travel Times 

Buffer Index FHWA 
95th precentile time − average travel time

average travel time
× 100% 

Planning Time 

Index 
FHWA 

95th percentile travel time

free flow travel time
 

Frequency of 

Congestion 
FHWA Frequency of trips exceeding a threshold value 

Skew of travel time 

distribution 

Van Lint and Van 

Zuylen (2005) 
λ𝑠𝑘𝑒𝑤 =  

T90 − T50

T50 − T10
 

 

Width of travel 

time distribution 

Van Lint and Van 

Zuylen (2005) 
λ𝑤𝑖𝑑𝑡ℎ =  

T90 − T10

T50
 

Misery Index Lomax et al. (1997) 

Misery index

=  
Average travel rate (Top 20% trips)

Average travel rate
− 1 

 

2.4 TTR Analysis Methods 

Basically, TTR can be analyzed based on travel time distribution data only. However, to 

investigate the impacts of nonrecurring congestion on TTR, different sources of travel time 

variability including traffic incidents, inclement weather, and work zones were also studied by 

different researchers around the world. This section reviews these studies by classifying them 

into 5 categories including TTR studies based on travel time distribution only; Network level 

TTR studies; TTR studies with the consideration of weather impact; TTR studies with the 
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consideration of incident impact and TTR studies with the consideration of multiple influencing 

factors. 

2.4.1 TTR Studies Based on Travel Time Distribution 

Research studies that used basic travel time distribution data to model TTR are reviewed in 

this section. Error! Reference source not found. provides a summary of the studies 

reviewed in this section in chronological order. 

 2.4.1.1 Van Lint and Van Zuylen’s research work 

Van Lint and Van Zuylen (2005) derived two time-reliability-metrics (skew and width) 

based on the 90th, 50th and 10th percentile of the day-to-day travel time data. Both 

metrics can make a clear distinction between different traffic flow conditions (congestion, 

free or transient). They could also identify the travel time reliability and congestion 

during a given time of day (TOD) and day of week (DOW) time period. The results could 

be used in discrete choice models and for travel time unreliability visualization on the 

map. 

 2.4.1.2 Saberi and Bertini’s research work 

Saberi and Bertini (2010) prioritized freeway segments with the help of TTR measures 

based on the archived loop detector data from the Interstate-5 freeway (24 miles long) in 

Portland, Oregon in the U.S.  Several reliability measures were selected and examined 

using differential reliability maps and compared with travel-time-based measures. The 

authors found that the buffer time index and the coefficient of variance were the most 

consistent among the measures of reliability. Their research also showed that freeway 

segment correlations have high impacts on the variability of corridor travel time and should 

not be ignored. It was also found that different reliability measures presented different 

portraits of the reliability aspects on a freeway corridor. However, other factors 

contributing to the unreliability of travel times were not identified in this research study. 

 2.4.1.3 Yazici et al.’s research work 

Yazici et al. (2012) developed a method to analyze TTR based on DOW and TOD patterns 

by utilizing GPS data collected from taxis in the New York City. The authors selected 

coefficient of variation (CV), skewness (λskew), and width of the distribution (λvar) as the 

TTR measures and used the Classification and Regression Tee (C&RT) model for the 

determination of DOW-TOD periods for each selected TTR measure. 

The results of the study showed that TTR exhibited time-varying patterns which could be 

identified during different DOW-TOD periods. Based on the analysis results, the authors 

found that the “levels of reliability at the calculated periods generally did not agree well”, 

which means that a reliable period identified based on one measure could be found to be 

an unreliable period using a different measure. 

http://www.sciencedirect.com/science/article/pii/S0968090X16000309#b0155


10 

 2.4.1.4 Eliasson’s research work 

Eliasson (2007) used data from the Stockholm’s automatic camera system and developed 

a model for estimating travel time variability in terms of the mean travel time, length of 

link, and free flow travel time.  

The author identified a stable relationship between the relative standard deviation of travel 

time (standard deviation divided by travel time) and the relative increase in travel time 

(travel time divided by free-flow travel time) and then estimated a function to predict how 

changes in congestion impact the TTR.  

The author also investigated the relationship between travel time distribution and different 

TOD periods. The result showed that “travel times are approximately normally 

distributed” under severe congestion condition. However, the travel time distribution was 

skewed under low levels of congestion condition. 

 2.4.1.5 Emam and Ai-Deek’s research work 

Emam and Ai-Deek (2006) defined reliability as “the probability that an entity will perform 

its intended function(s) satisfactorily or without failure for a specified length of time under 

the stated operating conditions at a given level of confidence”. Based on such definition, 

the TTR was expressed mathematically using the failure rate (hazard) function. Four 

different travel time distributions were tested in this study including Weibull, exponential, 

log-normal, and normal distribution. The Anderson-Darling (AD) goodness-of-fit statistics 

and error percentages were employed to evaluate model performances. As a result, the log-

normal distribution provided the best model fit and was then used to predict TTR of 

freeway corridors. The proposed methodology was applied to estimate travel time 

reliability on the I-4 corridor in Orlando, Florida using real-world transportation data 

collected by dual-loop detectors.  

The results indicated that it was more efficient to use the same day of the week (e.g., 

Mondays) in the estimation of TTR for a roadway segment than to use mixed data (i.e., 

data collected across multiple weekdays), because of the significant differences between 

traffic patterns across multiple weekdays. In addition, the researchers also noticed that the 

new reliability estimation method showed higher sensitivity to geographical locations, 

which reflects the congestion level and bottlenecks.  

 2.4.1.6 Sohn and Kim’s research work 

Sohn and Kim (2009) presented a method for predicting the dynamic variance in estimating 

link travel times. The authors adopted the autoregressive moving average-generalized 

autoregressive conditional heteroscedasticity (ARMA-GARCH) model and employed the 

generalized Pareto distribution (GPD) in the computation to overcome the asymmetry in 

travel time distribution.  

The authors also used the travel time data which were obtained from the beacon-based 

probing system in Seoul and performed single and multiperiod predictions. The 90th, 95th, 

and 99th percentiles of travel times were selected as the TTR measures.  
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The analysis results showed that the ARMA-GARCH-GPD model was the most promising 

model for the first four sites. For the other sites without GPD, the ARMA-GARCH was 

good enough to obtain promising results.  

 2.4.1.7 Hainen et al.’s research work 

Hainen et al. (2011) conducted a study to compute travel time based on the data collected 

from Bluetooth devices. To examine the impact of bridge closure in Indiana, US, the 

authors used data from media access control (MAC) addresses from Bluetooth-enabled 

devices to conduct travel time plots and identify congestion choke points.  The authors also 

estimated the distribution of travel times on four alternate routes. The 25th and the 75th 

percentile travel times were used as the TTR measures to evaluate the effects of each 

choice. 

This study indicated how to evaluate different route choice based on data collected from 

Bluetooth devices, sampling methodology and travel time reliability data.  

 2.4.1.8 Lei et al.’s research work 

Lei et al. (2014) developed a path TTR estimation model considering the dynamic of shock 

waves using the probability-based method. The authors estimated two model parameters: 

distribution of travel time per unit distance and travel distances on different level of service 

(LOS) segments by using historical floating car data on Beijing’s Third Ring Expressway.  

Four LOS segments were taken as examples to explain the developed model. Finally, a 

comparison was made among the developed model, the generalized Pareto contrast model, 

and normal contrast model. The proposed model achieved higher prediction accuracy and 

significantly reduced the prediction range of travel time. 

 2.4.1.9 Zheng et al.’s research work 

Zheng et al. (2016) utilized the data from Automated Number Plate Recognition (ANPR) 

cameras to study TTR on a corridor in Changsha, China. Two reliability measures (standard 

deviation and the skewness of travel time) were derived from the travel time distribution 

model. The authors also investigated the relationship between these two measures and the 

expected travel time to show the effects of changing travel states. The results showed that 

the linear relationship could be developed between Travel Time Standard Deviation 

(TTSD) and mean travel time and skewness.  

However, the linear relationships between TTSD and the mean travel time and skewness 

were not same under different links/days. The regression parameters for a link also linearly 

depend on the link length. 

 2.4.1.10 Yang’s research work 

Yang (2016) developed an innovative freeway travel time estimation model based on the 

General Motors (GM) car-following model and verified the model with the travel time data 

in St. Louis, Missouri. As with travel time collection, the accuracy of the observed travel 

time and the optimal travel time data quantity should be determined before using the TTR 

data. Hasofer Lind - Rackwitz Fiessler (HL-RF) algorithm was used to calculate the 
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reliability index. The corridor and network level TTRs were estimated during a specific 

TOD-DOW time period. The results of the developed model were compared with the 

results of Florida TTR method. As the anticipated travel time increases, the TTRs of both 

methods also increase. During peak hours, TTR generated from the proposed method is 

found to be lower than that generated from the Florida reliability method.  

 2.4.1.11 Wang et al.’s research work 

Wang et al. (2017) utilized the GPS probe data to forecast freeway TTR. The authors 

investigated the relationships between TTR and roadway traffic density to forecast 

reliability under future traffic conditions. The modeling results indicated that vehicle speed 

distributions and TTR which was quantified by speed distribution CV via GPS data were 

affected by different traffic conditions. The larger roadway density resulted in lower travel 

speed and lower reliability. This result also revealed that the distribution of CV is strongly 

associated with segment density. The authors pointed that “travel time reliability can be 

forecasted based on the relationship between CV and density when future roadway density 

is available or predictable.” 

 2.4.1.12 Chen et al.’s research work 

Chen et al. (2017) proposed a copula-based approach, which incorporated the stochastic 

characteristics of segments travel time to model arterial travel time distribution. The 

authors examined different types of copula models and empirically analyzed segments 

correlation. Based on the estimated parameters of the models, the best copula model was 

selected and was also examined at two study sites at last. Skewness and width were selected 

as the path TTR measures. The result was compared with the convolution model without 

capturing segments correlation. The developed model demonstrated its advantage on travel 

time distribution estimation. Thus, the estimated path TTR was also more accurate.  

 2.4.1.13 Guo et al.’s research work 

Guo et al. (2010) proposed a multistate TTR modeling framework for travel time 

modeling and reporting. This model was based on the premise that “travel time is 

dominated by the underlying traffic conditions”, which was a complex stochastic process 

and may contain multiple travel time states. Two levels of uncertainty were quantitatively 

assessed in the proposed model. The first level of uncertainty was the probability under a 

given traffic condition and the second level of uncertainty was the variation of travel time 

under each traffic condition. The proposed model provided an opportunity for a novel, 

easy-to-understand TTR reporting mechanism built upon existing reliability measures.  
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Table 2.3: Summary of TTR Studies Based on Travel Time Distribution 

Year Author Location 
Data 

Aggregation 

Data 

Source 

Study 

Periods 

TTR 

Measure(s) 
Modeling Algorithm 

2005 
Van Lint and Van 

Zuylen 

Rotterdam, 

Netherlands 
15-min N/A 6 a.m.- 8 p.m. λ𝑠𝑘𝑒𝑤, λ𝑤𝑖𝑑𝑡ℎ 

Piecewise linear speed–

based (PLSB) trajectory 

algorithm 

2007 Eliasson Stockholm 15-min 
Camera 

detectors 

6:30 a.m.- 8:30 

p.m. 
Standard deviation N/A 

2006 
Emam and Ai-

Deek 

Orlando, FL, 

US 
5-min RTMC 

3:30 – 6:30 

p.m. 

Buffer index, 

Coefficient of 

variation 

Weibull, exponential, 

lognormal, and normal 

distribution testing 

2008 Sohn and Kim Seoul, Korea N/A 
Beacon-based 

probing system 
N/A 

Travel time index 

Buffer index 

Autoregressive moving 

average-generalized 

autoregressive 

conditional 

heteroscedasticity 

(ARMA-GARCH) model 

2010 Guo et al. 
San Antonio, 

TX, US 
N/A 

Automatic 

vehicle 

identification 

(AVI) stations 

6:00 - 10:00 

a.m. 

3:00 - 7:00 

p.m. 

Standard deviation, 

90th percentile travel 

time 

Maximum likelihood 

function; Mixture normal 

model 

2010 Saberi and Bertini 
Portland, 

Oregon, US 
5-min 

Inductive loop 

detectors 
3 p.m. – 6 p.m. 

Buffer index, 

Coefficient of 

variation 

Standard midpoint 

algorithm 

2011 Hainen et al. Indiana, US N/A 
Bluetooth-

enabled devices 
N/A 

25th, 50th, and 75th 

percentile travel time 
N/A 

2012 Yazici et al. 
New York 

City, US 
N/A 

NYC Taxis 

GPS data 
N/A 

Coefficient of 

variation, λ𝑠𝑘𝑒𝑤, 

λ𝑤𝑖𝑑𝑡ℎ 

Commission and 

employed classification 

and regression tree 

(C&RT) methodology 

2014 Lei et al. Beijing, China 5-min 
Floating car 

data 

0:00 a.m.- 

23:59 p.m. 
N/A 

Maximum likelihood 

method; Shock wave 

theory 
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Year Author Location 
Data 

Aggregation 

Data 

Source 

Study 

Periods 

TTR 

Measure(s) 
Modeling Algorithm 

2016 Zheng et al. 
Changsha, 

China 
30s ANPR data 

0:00 a.m.- 

23:59 p.m. 

Standard deviation, 

travel time skewness. 

Zuylen’s delay probability 

distribution model 

2016 Yang 
St. Louis, Mo, 

US 
30s 

MoDOT TMC 

monitors 
N/A 

Standard deviation, 

Coefficient of 

variation, 

Buffer index, 

Planning time index 

General Motors-based 

travel time estimation 

model 

2017 Wang et al. 
Seattle, WA, 

US 
20s GPS data 

5:00 - 11:00 

a.m. 

Coefficient of 

variation 

Maximum likelihood 

method; K-Means analysis 

2017 Chen et al. 

Shanghai, 

China; 

Los Angeles, 

CA, US 

N/A AVI cameras 
0:00 a.m.- 

23:59 p.m. 

Standard deviation, 

λ𝑤𝑖𝑑𝑡ℎ 
Copula theory 
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2.4.2 Network Level TTR Studies 

Research studies on modeling TTR at a network level were reviewed and presented in this 

section. Error! Reference source not found. provides a summary of the studies reviewed in 

this section in chronological order. 

 2.4.2.1 Yang et al.’s research work 

Yang et al. (2014) utilized the Hasofer–Lind–Rackwitz–Fiessler (HL-RF) algorithm which 

was widely used in the field of reliability engineering to calculate the reliability index of a 

system. The modeling framework consisted of three parts: travel time estimation, travel 

time distribution estimation, and corridor-network TTR index calculation. A description of 

the data set used in this study was followed by the implementation and applications of the 

proposed method. The results showed that this modeling method could better capture the 

variability of traffic flow in detail, especially during rush hours. 

 2.4.2.2 Recker et al.’s research work 

Recker et al. (2005) conducted a study on risk-taking route choice via the analyses of travel 

time variability data of section, corridor, and network under different demand levels. The 

TTR was also evaluated. In this study, path TTR was defined as “the probability that the 

travel time of a given path is within an acceptable threshold.” OD TTR was defined as “the 

probability that the weighted average travel time of a given OD pair is within an acceptable 

threshold.” The evaluation procedure was based upon a Monte Carlo simulation 

framework. Three scenarios were constructed to test how different route choice models 

affect the estimation of travel time reliability under uncertain environment. The analysis 

can be concluded as: “as the degree of risk aversion to network uncertainty increases, 

travel time also increases and results in lower travel time reliability.” 

 2.4.2.3 Clark and Watling’s research work 

Clark and Watling (2005) conducted a study to estimate the total network travel time 

probability distribution. They considered day-to-day demand variations in the travel 

demand matrix as a main factor affecting travel time variability and estimated the total 

travel time density function. The numerical test results indicated that the application of this 

approach was suitable to understand the impact of capacity changes.  

 2.4.2.4 Ng and Waller’s research work 

Ng and Waller (2010) developed a methodology to assess TTR in a transportation network 

under uncertain road capacities. A Fourier transformation approach was presented to 

numerically approximate the probability density function (PDF) of the system travel time, 

where link capacities were assumed to be random and independent.  The special case when 

capacities were normally distributed random variables was also considered. The proposed 

approach was applied to test networks and analyze the impact of capacity variations on the 

TTR, which was proved to be valid. 

 2.4.2.5 Tu et al.’s research work 

Tu et al. (2013) investigated a macroscopic TTR diagram to relate the TTR to the network 

density. The authors conducted empirical analyses to investigate the variability in 
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macroscopic fundamental diagram (MFD) as seen in scatter plots and to show the TTR in 

relation to the network accumulations using traffic data of freeway networks in 

Netherlands. A critical TTR accumulation point was found to exist, “below which network 

accumulation had little impact on travel time reliability and had a significant impact when 

it is above”. The critical TTR accumulation was also found to be usually lower than the 

critical MFD accumulation.  
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Table 2.4: Summary of Network Level TTR Studies 

Year Author Location 
Data 

Aggregation 

Data 

Source 

Study 

Periods 

TTR 

Measure(s) 
Modeling Algorithm 

2004 Recker et al. 

Orange 

County, CA, 

US 

5-min 
Loop detector 

data 
4 - 10 a.m. Standard deviation 

Mixed logit route choice 

model 

2005 Clark and Watling N/A N/A N/A N/A 100(1 – Pr(M > 5))% 

Poisson demand 

distribution model; Monte 

Carlo method 

2010 Ng and Waller N/A N/A N/A N/A 
Volume-to-capacity 

ratios 

Fourier transforms, BPR 

function; 

2013 Tu et al. Netherlands 10-min 
dual loop 

detectors 
N/A 

Probability of traffic 

breakdown 

Piecewise Linear Speed 

Based (PLSB) trajectory 

algorithm; 

2014 Yang et al. 
St. Louis, 

MO, US 
15-min 

MoDOT traffic 

sensors’ data 
9 a.m.- 5 p.m. Standard deviation 

KDE technique with 

optimized bandwidths 
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2.4.3 TTR Studies with the Consideration of Incidents 

Research studies on  modeling TTR with the consideration of incidents were categorized and 

reviewed in this section. Error! Reference source not found. provides a summary of the 

studies reviewed in this section in chronological order. 

 2.4.3.1 Hojati et al.’s research work 

Hojati et al. (2016) developed a method to quantify the impact of traffic incidents on TTR 

on freeways. The authors first obtained the Recurrent Speed Profile (RSP) for each specific 

link and DOW using the Quantum-Frequency Algorithm. The non-recurrent congestion 

was identified as an ‘event’ with a start time and end time. Next, the total travel time due 

to an event on a set of affected links was modeled, and then the BI was selected as the TTR 

measure. The authors then conducted a Tobit regression analysis which can handle the 

presence of censored data either in the lower tail or in the upper tail. Based on the 

Queensland DOT and STREAMS Incident Management System (SIMS) database, 430 

incidents were matched with the identified events. Finally, 3 Tobit model estimation results 

were shown focusing on crashes, hazards and stationary vehicles.  

 2.4.3.2 Charlotte et al.’s research work 

Charlotte et al. (2017) presented an empirical analysis of travel time distribution on urban 

roads in the region of Paris, France. Historical data of accidents and roadway works were 

added to evaluate the impact of some non-recurrent influencing factors. 90th percentile of 

the travel time distribution was modeled with linear models including explanatory variables 

including number of lanes, mean value of the travel time distribution, travel direction, time 

of the day, number of accidents and roadworks. 

2.4.4 TTR Studies with the Consideration of Weather Condition 

Research studies on modeling TTR with the consideration of weather impacts were 

categorized in this section. Error! Reference source not found. provides a summary of the 

studies reviewed in this section in chronological order. 

 2.4.4.1 Martchouk et al.’s research work 

Martchouk et al. (2010) studied the travel-time variability with the travel-time data on 

freeway segments in Indianapolis collected with the help of anonymous Bluetooth 

sampling techniques. The effects of adverse weather were discussed in the study. The 

results showed that the travel time increased during adverse weather period, and the 

variance in travel times during the same time period also increased. Various statistical 

models were also estimated in the study to understand the effect of individual vehicle travel 

times variability as well as average travel times variability. For the individual vehicle travel 

time model, the probability of travel duration time changes of a segment was estimated. As 

anticipated, higher average speed led to lower individual travel time, whereas higher 

distance and volume resulted in increased travel time. In the average travel time model, 

estimated parameter indicated that higher average travel time during the previous time 

period resulted in higher average travel time during the current period. 
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 2.4.4.2 Peer et al.’s research work 

Peer et al. (2012) conducted a study to provide simple rules to predict travel time variability 

based on the travel time data of 145 (one-directional) highway links in Netherlands. 

Standard deviation (SD) of travel times was used as the TTR measure. The explanatory 

variables included DOW, season, weather condition and network condition. Formulas for 

TTR were built based on ‘rough information’ and ‘fine information’.  Mean delay (MD) 

was also analyzed to express the travel time. 

The empirical analysis of travel time variability results showed that a shorter link is on 

average associated with lower variability. The authors also found that variability is 

positively correlated with the number of lanes for smaller delays and it is negatively 

correlated with the number of lanes for longer delays. 

 2.4.4.3 Shao et al.’s research work 

Shao et al. (2008) proposed a new travel time reliability-based stochastic user equilibrium 

traffic assignment model to investigate the effects of rain on risk-taking behaviors of 

different road users in networks with day-to-day demand fluctuations and variations in 

travel time. To capture the rain effects on travel time, a new travel time function was 

developed based on the conventional Bureau of Public Roads (BPR) function. Rain effects 

on traffic demand were also modeled via the conventional elastic demand function. Finally, 

it was found in the numerical results that path choice behaviors and traffic demand of 

different road users were affected by the rainfall intensity. 

 2.4.4.4 Li et al.’s research work 

Li et al. (2016) conducted a study which focused on studying the weather impact on traffic 

operations. Different rainfall intensity data for every hour of Florida regions were 

incorporated into the TTR model along with the historical speed database. Different 

scenarios for each hour (under clear weather, light rain, and heavy rain conditions) were 

created and applied to the respective roadway sections. The results showed that the speed 

reductions on arterials were 10% for light rain and 12% for heavy rain. However, the 

assumed reduction in the speed on arterials caused by rain intensity may need to be verified 

with additional empirical data during a long period of time to reveal the trends and impacts 

with more confidence and accuracy. 

 2.4.4.5 Kamga and Yazici’s research work 

Kamga and Yazici (2014) conducted a study via merging taxi trips’ GPS records and 

historical weather records of New York City and then calculated the descriptive statistics 

of travel time for different TOD, DOW and various weather conditions. The weather 

conditions were categorized into 8 groups including Clear, Light rain, Rain, Heavy rain, 

Light snow, Snow, Heavy Snow and Unknown. Based on the value of each coefficient, the 

Classification and Regression Trees (C&RT) model was used to extract the travel time 

coefficients distribution under each DOW-TOD-Weather category.  

The temporal pattern analysis results of each travel time parameter were finally presented. 

With the analysis results of CV, the authors pointed out: “Regarding the weather impacts, 
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it was found that inclement weather indeed increases average travel times yet decreases 

variability, resulting in higher travel reliability indicated by lower coefficients of 

variation.” 
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Table 2.5: Summary of TTR Studies with the Consideration of Weather/Incident Impacts 

Year Author Location 
Data 

Aggregation 

Data 

Source 

Study 

Periods 

TTR 

Measure(s) 
Modeling Algorithm 

2008 Shao et al. N/A N/A N/A N/A 
Standard 

deviation 

RSUE traffic assignment 

model 

2011 Martchouk et al. Indiana, US N/A 
Microwave 

detectors 
N/A 

Standard 

deviation 

Hazards-based model 

BPR function 

2012 Peer et al. Netherlands 15-min Loop detector 
6:00 a.m. - 8:15 

p.m. 

Standard 

deviation 

Non-traffic regime-based 

model; traffic regime-

based model 

2014 Kamga and Yazici NYC, US N/A 
Taxis GPS 

data 
N/A 

Standard 

Deviation, 

Average travel 

time, 

Coefficient of 

variation 

Classification and 

Regression Trees 

(C&RT) model 

2016 Li et al. Florida N/A 
FDOT 

database 
N/A 

Actual travel 

time 

FDOT travel time 

reliability model 

2016 Hojati et al. Queensland N/A 
Queensland 

DMTR 
N/A 

Extra buffer 

time index 
Tobit model 

2017 Charlotte et al. Paris 6-min Loop detectors 

7 - 10 a.m. 

5 - 8 p.m. 

10p.m. - 5 a.m. 

90th percentile 

travel time 
N/A 
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2.4.5 TTR Studies with the Consideration of Multiple Influencing Factors 

Research studies on modeling TTR with the consideration of multiple influencing factors 

were presented in this section. Error! Reference source not found. provides a summary of 

the studies reviewed in this section in chronological order. 

 2.4.5.1 Tu’s research work 

Tu (2008) developed a TTR model with the consideration of four influencing factors 

including road geometry, adverse weather, speed limits, and traffic accidents. The model 

was validated using traffic data from urban freeways in Netherlands. The results of road 

geometry impacts indicated that there was a threshold value L for the length of 

ramp/weaving section. If the actual length was less than L, the TTR would decrease with 

the decreasing length of ramp/weaving sections. If the actual length was larger than L, the 

length has far less impact on travel time reliability. TTR on the freeway was also strongly 

impacted by the number of ramps per unit road length. Above a threshold value, the more 

ramps contribute to the lower TTR. The results of adverse weather’s impacts indicated that 

adverse weather conditions clearly have negative effects on TTR on the freeway, which 

means that travel times are less reliable under adverse weather conditions than those under 

normal weather conditions, especially at higher inflow levels. The results of speed limit 

impacts indicated that constant speed limit increases the TTR. However, the effects 

depended upon the specific constant speed limit value. The results of the whole study 

indicated that TTR following traffic accidents was lower than that without traffic accidents. 

In addition, the author concluded that traffic accidents were not the main source of travel 

time unreliability.  

 2.4.5.2 Javid and Javid’s research work 

Javid and Javid (2017) developed a framework to estimate travel time variability caused 

by traffic incidents based on integrated traffic, road geometry, incident, and weather data. 

A series of robust regression models were developed based on the data from a stretch in 

California's highway system. Next, travel time variability was estimated via the proposed 

speed change models, and the results were compared with the actual changes in travel time. 

The results of the split-sample validation showed the effectiveness of the proposed models 

in estimating the travel time variability. In conclusion, for incidents occurring on 

weekends, the highway clearance time would be shorter. Shoulder existence and lane width 

would adversely impact downstream highway clearance time. 

 2.4.5.3 Florida Department of Transportation’s research work 

Florida DOT (2011) developed a methodology to estimate TTR with the consideration of 

a set of different possible scenarios. Expected travel times were calculated for those 

scenarios along with the probability of occurrence of each scenario. The concept was 

illustrated in Figure 2.1 below in which each analysis period during each day belongs to a 

particular scenario. A scenario was a set of conditions affecting the travel time of the 

sections, including non-congested vs. congested, weather, incidents, and work zones. All 

days or analysis periods with the same set of conditions were categorized under a given 

scenario. The percent of analysis periods or days that operate under a scenario constituted 
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the probability of occurrence. The methodology developed estimated expected travel time 

for each of the scenarios identified, along with the expected frequency of occurrence. The 

method then assembled estimated travel times along with their respective frequencies and 

obtained travel time distribution for the subject section. 

 

Figure 2.1: Florida DOT Scenario Selection Method 

Source: Florida DOT (2011) 

 2.4.5.4 Schroeder et al.’s research work 

Schroeder et al. (2013) presented a methodology for freeway reliability analysis based on 

freeway data in North Carolina. The variability impact considerations included time-of-

day, day-of-week, and month-of-year differences, and various nonrecurring congestion 

sources (such as weather, incidents, work zones, and special events). The freeway scenario 

generator (FSG) was used and resulted in 2,508 scenarios based on freeway facility data in 

North Carolina. The resulting travel time distribution was presented, and a sensitivity 

analysis was conducted to explore the relationship between weather and incidents and the 

overall reliability of the facility. 

 2.4.5.5 Barkley et al.’s research work 

Barkley et al. (2012) pointed out that although current research have suggested that 

bimodal normal distribution models can provide insight into the TTR within the free-flow 

and congested states that most facilities experience. However, depending on the frequency 

and severity of non-recurrent congestion, two states may not sufficiently capture a facility’s 

true operational variability. To address this issue, this study presented a methodology for 

determining the optimal number of travel time states using statistical goodness-of-fit tests 

and for ensuring that the results meaningfully explain travel time variability. More 

specifically, the Bayesian information criterion (BIC) was leveraged to compare the model 

fits for normal distributions composed of one to nine states. To examine the relationship 

between non-recurrent congestion and travel time state, data on local sources of non-

recurrent congestion were collected. Travel times that coincided with non-recurrent 

congestion instances were manually tagged with the condition during their measurement: 
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(a) baseline, (b) incident, (c) weather, (d) special event, (e) lane closure, or (f) high demand. 

This study utilized travel times generated from loop detectors at a 5-min aggregation, 

which were obtained from the Caltrans Performance Measurement System (PeMS). The 

results suggested that multistate models when combined with data on non-recurrent 

congestion could inform the relationship between specific types of non-recurrent 

congestion and the travel time state. This valuable information could help agencies develop 

targeted congestion mitigation measures to improve TTR.  

 2.4.5.6 Kwon et al.’s research work 

Kwon et al. (2017) developed an empirical corridor level method to study the TTR. The 

authors divided the variables which had an impact on the travel time into three categories: 

traffic influencing events (traffic incidents and crashes, work zone activity, weather and 

environmental conditions), traffic demand (fluctuations in day-to-day demand and special 

events), and physical road features (traffic control devices and inadequate base capacity). 

A linear regression statistical model was then constructed to conduct the travel time 

reliability analysis. Buffer time (95th percentile of travel time - median travel time) was 

chosen over other measures to represent the TTR because it was more popular and easier 

to formulate and fit the model. The model was tested in San Francisco Bay Area and used 

to identify how each variable contributes to the TTR. The results of this study provided 

useful insights into predicting the TTR. 

 2.4.5.7 Kim’s research work 

Kim (2014) conducted a study on TTR and developed a compound Gamma distribution 

model. The model captured both vehicle-to-vehicle (V2V) and day-to-day (D2D) travel 

delay. The author also proposed a framework that features scenario-based simulation 

approaches. The approach aimed to capture different unreliability factors such as incidents, 

bad weather, work-zone and planned special events through several scenarios and analyze 

their impacts on travel time outcomes using dynamic traffic assignment (DTA) models. 

This approach could provide the ability to forecast potential variations in travel time and 

estimate of population travel time distributions with more accuracy.  
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Table 2.6: Summary of TTR Studies with the Consideration of Multiple Influencing Factors 

Year Author Location 
Data 

Aggregation 

Data 

Source 

Study 

Periods 

TTR 

Measure(s) 
Modeling Algorithm 

2008 Tu 
Delft, 

Netherlands 
N/A 

Regiolab-Delft 

monitoring 

system. 

N/A λ𝑠𝑘𝑒𝑤, λ𝑤𝑖𝑑𝑡ℎ 
Dynamic Traffic 

Assignment 

2011 Florida DOT Florida, US N/A FDOT database 4-7 p.m. Planning time index Scenario based method 

2012 Barkley et al. 
San Diego, 

CA, US 
5-min PeMS N/A Standard deviation 

Multistate model; 

Expectation-maximization 

algorithm 

2013 Schroeder et al. 
Durham, NC, 

US 
15-min INRIX 2-8 p.m. Travel time index FREEVAL HCM model 

2014 Kim NYC, US 5-min 

ASOS station, 

INFORM 

system 

6-10 a.m. 

Percent variation, 

Misery index and 

Buffer time index 

Expectation-maximization 

algorithm 

2017 Kwon et al. 
San Francisco, 

CA, US 
N/A PeMS 

7 - 9 a.m. 

11 a.m. - 1 p.m. 

4-6 p.m. 

Buffer time 
FDOT travel time reliability 

model 

2017 Javid and Javid California, US 5-min PEOS database N/A 

Index of agreement, 

Correlation 

coefficient 

Robust regression 
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2.5 Summary 

A comprehensive review and synthesis of the current and historical researches related to 

TTR definitions, measures, analysis and modeling methodologies have been discussed and 

presented in the preceding sections. This is intended to provide a solid reference and assistance 

in developing TTR models for future tasks. 
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Chapter 3.  Data Collection and Processing 

3.1 Introduction 

This chapter provides the basic information needed to analyze TTR, including the travel 

time data and historical weather data utilized in this study. The following sections are organized 

as follows. Section 3.2 presents detailed information about the raw travel time data source, 

followed by the discussions about weather data collection in section 3.3. Section 3.4 described 

details of data processing. Finally, section 3.5 concludes this chapter with a summary. 

 

3.2 Travel Time Data Collection 

The TTR index is measured based on the distribution of travel time on a segment over 

time. Effective calculation of this index requires accurate, high-quality data. This study focuses 

on the travel time data gathered from the Regional Integrated Transportation Information System 

(RITIS) website and use the collected data to conduct the TTR analysis. A series of major 

freeway segments are selected for the case study: Interstate 77 (I-77) Southbound (Figure 3.1) is 

one of the most heavily traveled Interstate highways in Charlotte area and runs from north to 

south. All the selected segments have uninterrupted coverage of RITIS data 24 hours per day and 

365 days a year. 

Interstate 77 begins at the South Carolina state line, near Fort Mill, and goes through the 

city of Charlotte as a major north-south corridor, connecting the Charlotte center area with the 

suburbs of Pineville, Huntersville, Cornelius, and Davidson. The highways in Charlotte area 

experience massive traffic congestion during weekdays due to heavy commuter and interstate 

traffic.  

The selected section of I-77 Southbound starts from the intersection with Harris oak Blvd 

and ends at the interchange with I-485 (Exit 2) at the south part of the city. 32 roadway segments 

are selected in this study, and the total length of the selected section is 19 miles. 
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Figure 3.1: Selected I-77 Southbound Section 

 

In order to evaluate TTR, there is a need for accurate travel time data. As discussed in the 

literature review, in the past, travel time was deduced from the loop detector data, historical 

trends or floating car runs. In this study, travel time and speed data are obtained from the RITIS 

website which gathered information about roadway speeds and vehicle counts from 300 million 

real-time anonymous mobile phones, connected cars, trucks, delivery vans, and other fleet 

vehicles equipped with GPS locator devices. 

On the RITIS website probe data analytic suite, the raw probe data can be downloaded 

with the desired section and format. The roadway section can be selected based on the Road 

states and countries, TMCs, Directions, Zip codes, Road class and Road name. The partial 

sections can be selected with the selection of begin and end intersections. The date range can be 

selected from January 1st, 2008 to today. Seven days of week and times of day from 12:00 AM to 

11:59 PM can also be selected. The units of travel time can be categorized into both seconds and 

minutes. The averaging period can be selected as five minutes, ten minutes, fifteen minutes and 

one hour. A sample of raw travel time data utilized in this study is shown in Table 3.1 below: 
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Table 3.1: Sample Raw Travel Time Data 

TMC Code Measurement_tstamp Speed Travel_time_seconds 

125N04784 1/1/2015 0:00 62.91 53.58 

125N04783 1/1/2015 0:00 61.17 12.82 

125N04786 1/1/2015 0:00 60.43 47.56 

125N04785 1/1/2015 0:00 61.3 11.85 

125N04780 1/1/2015 0:00 63.97 14.59 

125N04782 1/1/2015 0:00 63.04 21.73 

125N04781 1/1/2015 0:00 62.79 12.42 

125N04788 1/1/2015 0:00 65.03 29.6 

125N04787 1/1/2015 0:00 63.5 53.76 

125N04789 1/1/2015 0:00 64.79 54.5 

125-04783 1/1/2015 0:00 62.98 33.22 

125-04782 1/1/2015 0:00 62.75 35.68 

125-04785 1/1/2015 0:00 60.54 5.16 

125N04784 1/1/2015 0:00 62.91 53.58 

 

Table 3.1 contains the following information: 

TMC_Code: The RITIS Probe Data Analytics Suite uses the TMC (traffic message 

channel) standard to uniquely identify each road segment. This field indicates the segment ID. 

Measurement_tstamp: This field indicates the timestamp of the record. 

Speed: This field indicates the current estimated harmonic mean speed for the roadway 

segment in miles per hour. 

Travel_time_seconds: This field indicates the time it will take to drive along the roadway 

segment. 

 

3.3 Weather Data Collection 

The historical weather data near the Charlotte Douglas International airport can be found 

at the www.wunderground.com website. The raw weather data can be achieved within the 

desired time period. The date range can be selected from January 1st, 1941 to today.  

The raw weather data include information on different categories such as temperature, 

dew point, humidity, pressure, visibility, wind direction, wind speed, gust speed, precipitation, 

and conditions. The raw weather data from this website were recorded per hour. Due to the 

discrepancy in the time interval, one-to-one mapping or correlation study cannot be done using 

the original data. Hence, the methodology to combine the traffic data with the weather data will 

be discussed in the next section. The sample of weather data achieved is shown in Table 3.2 

below. 

http://www.wunderground.com/
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Table 3.2: Sample Raw Weather Data 

Date Time (EDT) Visibility Conditions 

Saturday, March 14, 2009 6:55 AM 2.0 mi Rain 

Saturday, March 14, 2009 7:55 AM 2.0 mi Rain 

Saturday, March 14, 2009 8:55 AM 2.0 mi Light Rain 

Saturday, March 14, 2009 9:55 AM 2.0 mi Light Rain 

Saturday, March 14, 2009 10:55 AM 3.0 mi Light Rain 

Saturday, March 14, 2009 11:55 AM 2.0 mi Light Rain 

Saturday, March 14, 2009 12:55 PM 3.0 mi Light Rain 

Saturday, March 14, 2009 1:55 PM 7.0 mi Light Rain 

Saturday, March 14, 2009 2:55 PM 6.0 mi Light Rain 

Saturday, March 14, 2009 3:55 PM 7.0 mi Light Rain 

Saturday, March 14, 2009 4:55 PM 4.0 mi Rain 

 

3.4 Data Processing 

Based on previous studies, it is widely accepted that only severe weather events will cause 

a significant impact on speeds and travel times. Due to the weather characteristics in the Charlotte 

area and the distribution of each weather category, detailed weather conditions are categorized into 

three groups including normal, rain, and snow/fog/ice. Table 3.3 presents the detailed classification 

of the weather conditions. Conditions such as “overcast” or “mostly cloudy” are assumed to be no 

different from “clear” conditions due to no obvious impact on traffic conditions. These conditions 

are categorized into ‘normal’. All the conditions such as ‘rain’ or ‘thunderstorm’ are categorized 

as ‘rain’. In order to ensure the acceptable sample size, “snow”, “fog”, “ice pellet”, and other 

similar conditions are combined together due to their rate of occurrence. 

 

 
Table 3.3: Classification of the Weather Conditions 

Original Weather Condition New Weather Category 

Haze Snow/fog/ice 

Fog 

Smoke 

Patches of Fog 

Mist 

Shallow Fog 
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Original Weather Condition New Weather Category 

Light Freezing R 

Light Ice Pellet 

Light Freezing D 

Light Freezing F 

Ice Pellets 

Light Snow 

Snow 

Heavy Snow 

Clear Normal 

Partly Cloudy 

Mostly Cloudy 

Scattered Clouds 

Overcast 

Unknown 

Squalls 

Light Rain Rain 

Rain 

Heavy Rain 

Light Drizzle 

Heavy Thunderstorm 

Thunderstorms an 

Light Thunderstorm 

Thunderstorm 

Drizzle 

 

Figure 3.2 illustrates the data processing steps. In order to merge the link travel times 

dataset with historical weather dataset, the issue of different intervals of two datasets should be 

resolved first. The RITIS datasets are aggregated into 15-minute intervals, while the weather 

dataset is aggregated into one-hour intervals. Therefore, the weather conditions are distributed 

evenly with RITIS dataset based on the timestamp. Based on previous studies, different DOWs 

were usually categorized as weekdays and weekends. Therefore, the DOW variables are classified 

as weekdays and weekends categories. 
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Figure 3.2: Data processing flowchart 

 

3.5 Summary 

This chapter presents the detailed information on the data source, data structure, and 

processing methodology to combine the travel time with raw weather data. This is intended to 

provide a solid reference and assistance in analyzing travel time reliability for future tasks.  
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Chapter 4.  TTR Variability Analysis 

4.1 Introduction 

The chapter presents the analysis of TTR variability patterns. The following sections are 

organized as follows. Section 4.2 shows the study location identification process based on the 

TTR. Section 4.3 presents the TTR variability patterns under all conditions. Section 4.4 discusses 

the TTR variability patterns considering the DOW.  Section 4.5 describes the TTR variability 

patterns considering different weather conditions. Finally, section 4.6 concludes this chapter with 

a summary. 

4.2 Study Location Identification Based on TTR 
 

This section describes how to identify study locations based on the TTR measure. The 

indicator is calculated by aggregating the speed and travel time observations collected during the 

time interval of interest across a year. A number of performance measures such as FOC, PTI, BI 

can be applied to achieve this goal. For illustration purpose and other reasons that will be 

discussed later, we only present how to extract the PTI values for each segment during each time 

interval. 

4.2.1 Selection of TTR Measures  

TTR measures have been increasingly encouraged by FHWA for use to manage and operate 

transportation systems. Previous research has led to the employment of various TTR 

measures to assist in highway performance evaluation and congestion management. In the 

literature review chapter, we have introduced different types of travel time reliability 

measures such as the 95th percentile travel time, buffer index (BI), planning time index (PTI), 

misery index (MI), coefficient of variation (CV), frequency of congestion (FOC), skew of 

travel time distribution and width of travel time distribution.  

There are four most widely used TTR measures in previous studies and they are BI, PTI, CV, 

and FOC. However, BTI and CV have the limitation since their values depend on the average 

travel time, which may change over time (Fan and Gong, 2017). Therefore, the PTI is chosen 

as the primary measure of travel time reliability in this study. It is calculated by dividing 95th 

percentile travel time by the free flow travel time so as to represent the percentage of extra 

travel time that most people will need to add on to their trip in order to ensure on-time 

arrival. For example, a PTI value of 1.5 at 5 PM means that for a 20-minute trip in light 

traffic, 30 minutes should be planned at 5 PM to make sure that he or she is on time. The 

equation of PTI is provided below: 

 

𝑃𝑇𝐼𝑖 =
𝑇𝑖95

𝐹𝐹𝑇𝑇𝑖
 

Where  

 

𝑃𝑇𝐼𝑖 = The planning time index of segment i. 
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𝑇𝑖95 = 95th percentile travel time on the TMC segment i during the study period across 

multiple days (e.g., a month) or a year. 

𝐹𝐹𝑇𝑇𝑖 = Free-flow travel time on TMC i during the same observation period as mentioned 

above. 

For each roadway segment, the free-flow travel time is computed by dividing the length of 

segment by the free-flow speed, which was defined as the 85th percentile speed during 

overnight hours (10 p.m. to 5 a.m.) (Florida DOT, 2011, Schrank et al. 2015, Fan and Gong, 

2017). 

4.2.2 Corridor PTI Information Aggregation 

 

The first step to identify the study segments is to plot the two-dimensional PTI matrix for 

each road segment along the corridor. This would provide a straightforward and visualized 

tool for decision-makers to grasp the average traffic conditions along a corridor. The long-

term (in one-year period) PTI values of each segment from 2011 to 2015 were calculated and 

shown in Figure 4.1 to Figure 4.5, respectively. Note that in these figures, the horizontal axis 

denotes the time of day and the vertical axis represents TMC segments along the selected 

section on I-77 Southbound. Each cell represents the PTI value. The darker the color, the 

higher the PTI. 
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Figure 4.1: PTI Heatmap of I77 (SB) in Year 2011 
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Figure 4.2: PTI Heatmap of I77 (SB) in Year 2012 
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Figure 4.3: PTI Heatmap of I77 (SB) in Year 2013 

 

 

 

 

125-04791

125N04791

125-04790

125N04790

125-04789

125N04789

125-04788

125N04788

125-04787

125N04787

125-04786

125N04786

125-04785

125N04785

125-04784

125N04784

125-04783

125N04783

125-04782

125N04782

125-04781

125N04781

125-04780

125N04780

125-04779

125N04779

125-04778

125N04778

125-04777

125N04777

125-04776

125N04776 0

Time of day

T
M

C
 c

o
d

e

P
la

n
n

in
g

 t
im

e 
in

d
ex

0:00 12:00 18:00 23:45

6.6

I77 TTR Distribution Heatmap of Year 2013



38 

 
Figure 4.4: PTI Heatmap of I77 (SB) in Year 2014 
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Figure 4.5: PTI Heatmap of I77 (SB) in Year 2015 
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The PTI heatmaps show that, during morning peak periods, traffic congestion generally 

occurs in the vicinity of segment 125N04783 to segment 125N04789; during evening peak 

periods, drivers routinely experience frequent congestion between segment 125N04776 and 

segment 125N04785. The study location identification criteria will be discussed in the next 

section. 

4.2.3 Study Location Identification Based on PTI Rating 

In order to select the sections which can represent different traffic conditions, the qualitative 

ratings for each freeway segment in the study area are conducted and further classified into 

different categories/levels based on the qualitative criteria of a previous study (Wolniak and 

Mahapatra, 2014). The ratings which are given based on the PTI values are: (1) reliable 

(PTI<1.5); (2) moderately to heavily unreliable (1.5<PTI<2.5) and (3) extremely unreliable 

(PTI>2.5). 

Based on the rating criteria mentioned above, eight segments (shown in Figure 4.6) which 

contain the four PTI rating cases are selected as the sample study segments. The four cases 

are: 

 
Figure 4.6: Location of Selected Segments 
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Case 1 (PM peak only): The average PTI during AM peak period is reliable and during PM 

peak period is unreliable/extremely unreliable. The selected segments are 125-04779 and 

125N04780. 

Case 2 (AM peak only): The average PTI during AM peak period is unreliable/ extremely 

unreliable and during PM peak period is reliable. The selected segments are 125N04788 and 

125-04788. 

Case 3 (Double peak): The average PTI during both AM and PM peak periods are unreliable/ 

extremely unreliable. The selected segments are 125N04784 and 125N04785. 

Case 4 (No peak): The average PTI during both AM and PM peak periods are reliable. The 

selected segments are 125-04790 and 125N04791. 

Table 4.1 below describes the detailed information about the TMC code, segment location, 

segment length, year, average PTI and rating of these selected segments. The information on 

all the segments in the study area can be found in Appendix A. 

Table 4.1: PTI ratings during AM and PM peak periods of selected segments 

TMC Code Segment Location 

Segment 

Length 

(miles) 

Year 
Time 

Period 

Average 

PTI 
Rating 

125-04779 
TYVOLA 

RD/EXIT 5 
0.67 

2011 
AM Peak 1.09 reliable 

PM Peak 2.00 unreliable 

2012 
AM Peak 1.07 reliable 

PM Peak 1.98 unreliable 

2013 
AM Peak 1.06 reliable 

PM Peak 2.08 unreliable 

2014 
AM Peak 1.09 reliable 

PM Peak 2.34 unreliable 

2015 

AM Peak 1.11 reliable 

PM Peak 2.70 
extremely 

unreliable 

Average 
AM Peak 1.08 reliable 

PM Peak 2.22 unreliable 

125N04780 
WOODLAWN 

RD/EXIT 6 
0.26 

2011 
AM Peak 1.10 reliable 

PM Peak 2.45 unreliable 

2012 
AM Peak 1.07 reliable 

PM Peak 2.43 unreliable 

2013 
AM Peak 1.06 reliable 

PM Peak 2.49 unreliable 

2014 

AM Peak 1.10 reliable 

PM Peak 2.69 
extremely 

unreliable 

2015 AM Peak 1.12 reliable 
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TMC Code Segment Location 

Segment 

Length 

(miles) 

Year 
Time 

Period 

Average 

PTI 
Rating 

PM Peak 3.19 
extremely 

unreliable 

Average 

AM Peak 1.09 reliable 

PM Peak 2.65 
extremely 

unreliable 

125N04784 
I-277/US-74/EXIT 

9 
0.94 

2011 

AM Peak 1.60 unreliable 

PM Peak 3.10 
extremely 

unreliable 

2012 

AM Peak 1.75 unreliable 

PM Peak 3.34 
extremely 

unreliable 

2013 

AM Peak 2.01 unreliable 

PM Peak 4.04 
extremely 

unreliable 

2014 

AM Peak 2.33 unreliable 

PM Peak 4.09 
extremely 

unreliable 

2015 

AM Peak 2.77 
extremely 

unreliable 

PM Peak 5.45 
extremely 

unreliable 

Average 

AM Peak 2.09 unreliable 

PM Peak 4.00 
extremely 

unreliable 

125N04785 

US-29/NC-

27/MOREHEAD 

ST/EXIT 10 

0.20 

2011 
AM Peak 1.38 reliable 

PM Peak 1.71 unreliable 

2012 
AM Peak 1.60 unreliable 

PM Peak 2.08 unreliable 

2013 

AM Peak 1.87 unreliable 

PM Peak 2.95 
extremely 

unreliable 

2014 

AM Peak 2.11 unreliable 

PM Peak 2.85 
extremely 

unreliable 

2015 

AM Peak 2.63 
extremely 

unreliable 

PM Peak 3.61 
extremely 

unreliable 

Average 

AM Peak 1.92 unreliable 

PM Peak 2.64 
extremely 

unreliable 

125N04788 
LASALLE 

ST/EXIT 12 
0.53 

2011 
AM Peak 1.81 unreliable 

PM Peak 1.08 reliable 

2012 
AM Peak 1.90 unreliable 

PM Peak 1.07 reliable 
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TMC Code Segment Location 

Segment 

Length 

(miles) 

Year 
Time 

Period 

Average 

PTI 
Rating 

2013 
AM Peak 2.09 unreliable 

PM Peak 1.11 reliable 

2014 
AM Peak 2.32 unreliable 

PM Peak 1.26 reliable 

2015 
AM Peak 2.62 

extremely 

unreliable 

PM Peak 1.25 reliable 

Average 
AM Peak 2.15 unreliable 

PM Peak 1.16 reliable 

125-04788 
LASALLE 

ST/EXIT 12 
0.11 

2011 
AM Peak 1.72 unreliable 

PM Peak 1.09 reliable 

2012 
AM Peak 1.71 unreliable 

PM Peak 1.06 reliable 

2013 
AM Peak 2.09 unreliable 

PM Peak 1.07 reliable 

2014 
AM Peak 2.14 unreliable 

PM Peak 1.11 reliable 

2015 
AM Peak 2.63 

extremely 

unreliable 

PM Peak 1.13 reliable 

Average 
AM Peak 2.06 unreliable 

PM Peak 1.09 reliable 

125-04790 
US-21/SUNSET 

RD/EXIT 16 
2.25 

2011 
AM Peak 1.05 reliable 

PM Peak 1.05 reliable 

2012 
AM Peak 1.04 reliable 

PM Peak 1.04 reliable 

2013 
AM Peak 1.04 reliable 

PM Peak 1.04 reliable 

2014 
AM Peak 1.06 reliable 

PM Peak 1.05 reliable 

2015 
AM Peak 1.07 reliable 

PM Peak 1.05 reliable 

Average 
AM Peak 1.07 reliable 

PM Peak 1.07 reliable 

125N04791 

HARRIS OAK 

BLVD/REAMES 

RD/EXIT 18 

 

0.62 

2011 
AM Peak 1.06 reliable 

PM Peak 1.05 reliable 

2012 
AM Peak 1.05 reliable 

PM Peak 1.05 reliable 

2013 AM Peak 1.07 reliable 
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TMC Code Segment Location 

Segment 

Length 

(miles) 

Year 
Time 

Period 

Average 

PTI 
Rating 

PM Peak 1.06 reliable 

2014 
AM Peak 1.07 reliable 

PM Peak 1.07 reliable 

2015 
AM Peak 1.05 reliable 

PM Peak 1.05 reliable 

Average 
AM Peak 1.04 reliable 

PM Peak 1.04 reliable 

 

 

4.3 TTR Variability Patterns at Study Locations 

4.3.1 TTR Variability Pattern under Case 1 

The PTIs of segment 125-04779 and 125N04780 from 2011 to 2015 are shown in Figure 4.7 

and 4.8. These two sections are located at the south part of the Charlotte downtown area. The 

volume of outbound traffic during PM hours is high and therefore contributes to the frequent 

congestion under PM peak condition. In more detail, in the year 2015, these two segments 

had obvious higher PTI values during peak hours than those in the years of 2011-2014. The 

condition like this may be attributed to different factors such as the traffic volume, weather 

condition and accidents. Based on the historical weather data, the frequency of adverse 

weather in the year 2015 is higher than that in the year from 2011 to 2014. In order to 

eliminate the possible influence of adverse weather, the TTR distribution under only normal 

conditions during each year are also tested and the average daily PTI of 2015 is reduced a 

little bit (from 2.1 to 2.0) but still higher than PTIs of year 2011-2014. With respect to traffic 

accident, no detailed historical crash information about I77 is found. However, the number of 

total crashes in Mecklenburg county in each year had been getting higher and higher from 

2011 to 2015 (15476, 15915, 16790, 19847, and 21096, respectively) (NCDMV, 2016). This 

can also be another potential reason that contributes to the worsening of the traffic condition 

in the year 2015. 
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Figure 4.7: TTR Variability Pattern of Segment 125-04779 in 5 Years 

 
Figure 4.8: TTR Variability Pattern of Segment 125N04780 in 5 Years 

 

4.3.2 TTR Variability Pattern under Case 2 

The PTIs of segment 125N04788 and 125-04788 from 2011 to 2015 are shown in Figure 4.9 

and 4.10. These two sections are located at the north part of the Charlotte downtown area. 

The volume of inbound traffic during AM hours is high and therefore contributes to the 

frequent congestion under AM peak condition. Similar to case 1, in the year 2015, these two 

segments had obvious higher PTI values during peak hours than that of years of 2011-2014. 

The condition like this may also be explained by the potential reason like adverse weather 

and accident that contribute to the worsening of the traffic condition in the year 2015. 
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Figure 4.9: TTR Variability Pattern of Segment 125N04788 in 5 years 

 
Figure 4.10: TTR Variability Pattern of Segment 125-04788 in 5 years 

 

4.3.3 TTR Variability Pattern under Case 3 

The PTIs of segment 125N04784 and 125N04785 from 2011 to 2015 are shown in Figure 

4.11 and 4.12. These two sections are located adjacent to Charlotte downtown area. The 

volume of inbound traffic during AM hours and outbound traffic during PM hours are both 

high and therefore contributes to the frequent congestion under double peak condition. 

Similar to case 1 and 2, in the year 2015, these two segments had obvious higher PTI values 

during peak hours than those in the years of 2011-2014. The condition like this may also be 

explained by the potential reason like adverse weather and accident that contribute to the 

worsening of the traffic condition in the year 2015. 
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Figure 4.11: TTR Variability Pattern of Segment 125N04784 in 5 years 

 
Figure 4.12: TTR Variability Pattern of Segment 125N04785 in 5 years 

4.3.4 TTR Variability Pattern under Case 4 

The PTIs of segment 125-04790 and 125N04791 from 2011 to 2015 are shown in Figure 

4.13 and 4.14. These two sections are located far away from Charlotte downtown area. The 

traffic volumes during both AM and PM hours are low and therefore contributes to the no 

peak condition. The variation of PTIs throughout the day of each year do not change 

significantly (from 1.02 to 1.13 and 1.04 to 1.15, respectively). 
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Figure 4.13: TTR Variability Pattern of Segment 125-04790 in 5 years 

 
Figure 4.14: TTR Variability Pattern of Segment 125N04791 in 5 years 

 

4.4 TTR Variability Patterns of Different DOW 

4.4.1 TTR Variability Pattern of Different DOW: Case 1 

The PTIs of segment 125-04779 and 125N04780 on different DOW are shown in Figure 4.15 

to Figure 4.18 below. The TTR variability patterns of these two sections on weekdays are 

similar to the TTR variability pattern under all conditions. However, the TTR variability 

patterns on weekends are significantly different from weekdays. There are no PM peak 

characteristics of the TTR of these two segments on weekends as the PTIs throughout the day 

do not change significantly. The maximum PTIs on weekends of these two segments are 1.28 

and 1.24, respectively. The results indicate that traffic congestion on weekends becomes less 
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frequent and also travel demand on weekends is perhaps much lower than that on weekdays, 

which is consistent with previous studies (Chen et al., 2017, Chen et al., 2018) 

The PTIs of segment 125-04779 and 125N04780 from Monday to Sunday are shown in 

Figure 4.19 to Figure 4.20 below, and the average PTIs are shown in Table 4.2. The PTI 

ranking result shows that: for the segments showing the PM peak characteristics, the travel 

time on Friday is least reliable. This result is consistent with a previous study (Wang et al., 

2016). 

 
Figure 4.15: TTR Variability Pattern of Segment 125-04779 on Weekdays 

 
Figure 4.16: TTR Variability Pattern of Segment 125-04779 on Weekends 
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Figure 4.17: TTR Variability Pattern of Segment 125N04780 on Weekdays 

 
Figure 4.18: TTR Variability Pattern of Segment 125N04780 on Weekends 
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Figure 4.19: TTR Variability Pattern of Segment 125-04779 from Monday to Sunday 

 

 
Figure 4.20: TTR Variability Pattern of Segment 125N04780 from Monday to Sunday 

 

Table 4.2: Average PTIs from Monday to Sunday (Case 1) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125-04779 

Average 

PTI 
1.29 1.30 1.30 1.32 1.40 1.10 1.08 

Rank 5 3 4 2 1 6 7 

Segment 125N04780 

Average 

PTI 
1.37 1.39 1.38 1.44 1.51 1.11 1.09 

Rank 5 3 4 2 1 6 7 
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4.4.2 TTR Variability Pattern of Different DOW: Case 2 

The PTIs of segment 125N04788 and 125-04788 on different DOW are shown in Figure 4.21 

to Figure 4.24 below. Similar to case 1, the TTR variability patterns of these two sections on 

weekdays are similar to the TTR variability pattern under all conditions and the patterns on 

weekends are significantly different from weekdays. There are no AM peak characteristics of 

the TTR of these two segments on weekends as the PTIs throughout the day do not change 

significantly. The maximum PTIs on weekends of these two segments are 1.34 and 1.21, 

respectively. The results indicate that traffic congestion on weekends becomes less frequent 

and also travel demand of these two segments on weekends is perhaps much lower than that 

on weekdays. 

The PTIs of segment 125N04788 and 125-04788 from Monday to Sunday are shown in 

Figure 4.25 to Figure 4.26 below, and the average PTIs are shown in Table 4.3. The PTI 

ranking result shows that: for the segments showing the AM peak characteristics, the travel 

time on Tuesday is least reliable.  

 
Figure 4.21: TTR Variability Pattern of Segment 125N04788 on Weekdays 
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Figure 4.22: TTR Variability Pattern of Segment 125N04788 on Weekends 

 

 

 

 
Figure 4.23: TTR Variability Pattern of Segment 125-04788 on Weekdays 
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Figure 4.24: TTR Variability Pattern of Segment 125-04788 on Weekends 

 

 
Figure 4.25: TTR Variability Pattern of Segment 125N04788 from Monday to Sunday 
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Figure 4.26: TTR Variability Pattern of Segment 125-04788 from Monday to Sunday 

 
Table 4.3: Average PTIs from Monday to Sunday (Case 2) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125N04788 

Average 

PTI 
1.28 1.32 1.28 1.27 1.18 1.06 1.06 

Rank 3 1 2 4 5 7 6 

Segment 125-04788 

Average 

PTI 
1.32 1.37 1.31 1.31 1.25 1.07 1.07 

Rank 2 1 4 3 5 6 7 
 

4.4.3 TTR Variability Pattern of Different DOW: Case 3 

The PTIs of segment 125N04784 and 125-04785 on different DOW are shown in Figure 4.27 

to Figure 4.30 below. Similar to case 1, the TTR variability patterns of these two sections on 

weekdays are similar to the TTR variability pattern under all conditions and the patterns on 

weekends are significantly different from weekdays. The PTIs of these two sections on 

weekends do not change significantly in most of the time. The unique PM peak pattern of 

segment 125N04784 on weekends in the year 2015 may be explained by the potential reason 

that higher accident rate of the year 2015. 

The PTIs of segment 125N04784 and 125N04785 from Monday to Sunday are shown in 

Figure 4.31 to Figure 4.32 below, and the average PTIs are shown in Table 4.4. The PTI 

ranking result shows that: for the segments showing the double peak characteristics, the 

travel time on Friday is least reliable.  
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Figure 4.27:  TTR Variability Pattern of Segment 125N04784 on Weekdays 

 
Figure 4.28: TTR Variability Pattern of Segment 125N04784 on Weekends 

 

 



57 

 

 
Figure 4.29: TTR Variability Pattern of Segment 125N04785 on Weekdays 

 
Figure 4.30: TTR Variability Pattern of Segment 125N04785 on Weekends 
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Figure 4.31: TTR Variability Pattern of Segment 125N04784 from Monday to Sunday 

 

 
Figure 4.32: TTR Variability Pattern of Segment 125N04785 from Monday to Sunday 

 

Table 4.4: Average PTIs from Monday to Sunday (Case 3) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125N04784 

Average 

PTI 
1.74 1.78 1.85 1.97 2.02 1.15 1.12 

Rank 5 4 3 2 1 6 7 

Segment 125N04785 

Average 

PTI 
1.49 1.46 1.57 1.73 1.77 1.11 1.11 

Rank 4 5 3 2 1 6 7 
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4.4.4 TTR Variability Pattern of Different DOW: Case 4 

The PTIs of segment 125-04790 and 125N04791 on different DOW are shown in Figure 4.33 

to Figure 4.36 below. The PTIs of two segments during both weekdays and weekends do not 

change significantly, the maximum PTIs of these two segments are all less than 1.18. The 

results indicate that the traffic congestions on these two segments are not frequent on both 

weekdays and weekends. 

The PTIs of segment 125-04790 and 125N04791 from Monday to Sunday are shown in 

Figure 4.37 to Figure 4.38 below, and the average PTIs are shown in Table 4.5. The PTI 

ranking result shows that: for the segments showing no peak characteristics, average PTIs of 

each DOW do not change significantly (from 1.05 to 1.07 and 1.07 to 1.09, respectively).  

 
Figure 4.33: TTR Variability Pattern of Segment 125-04790 on Weekdays 

 
Figure 4.34: TTR Variability Pattern of Segment 125-04790 on Weekends 
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Figure 4.35: TTR Variability Pattern of Segment 125N04791 on Weekdays 

 
Figure 4.36: TTR Variability Pattern of Segment 125N04791 on Weekends 
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Figure 4.37: TTR Variability Pattern of Segment 125-04790 from Monday to Sunday 

 

 
Figure 4.38: TTR Variability Pattern of Segment 125N04791 from Monday to Sunday 

 

Table 4.5: Average PTIs from Monday to Sunday (Case 4) 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Segment 125-04790 

Average 

PTI 
1.06 1.07 1.06 1.06 1.05 1.06 1.06 

Rank 3 1 4 6 7 5 2 

Segment 125N04791 

Average 

PTI 
1.08 1.09 1.07 1.08 1.08 1.08 1.07 

Rank 2 1 6 5 4 3 7 
 

 



62 

4.5 TTR Variability Pattern under Different Weather Conditions 

4.5.1 TTR Variability Pattern under Different Weather Conditions: Case 1 

The PTIs of segment 125-04779 and 125N04780 under different weather conditions are 

shown in Figure 4.39 and Figure 4.40 below. The TTR variability patterns of these two 

sections under normal and rain conditions are similar and the pattern is unique under the 

snow/ice/fog condition. In more detail, the PTIs under rain condition have obvious higher 

values than normal condition throughout the day. This probably suggests that rain can cause 

several travel problems such as visibility issues while driving a vehicle. Heavy rainfall may 

lead to hydroplaning, slippery surfaces for tires and road flooding. Therefore, the values of 

PTIs under rain condition also increase and the traffic congestion becomes more frequent. 

This result is consistent with other studies (Tsapakis et al. 2013, Li et al. 2016). The PTIs 

under snow/ice/fog condition is also higher than those under normal condition throughout the 

day because of the influence of road surfaces and visibility problems (Weng et al., 2013). 

The potential reason for the unique TTR variability pattern under the snow/fog/ice condition 

could be: snow/fog/ice can contribute to unexcepted condition on the roadway anytime 

throughout the day. This result is also consistent with a previous study (Yazici et al., 2011). 

 
Figure 4.39: TTR Variability Pattern of Segment 125-04779 under Different Weather Conditions 
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Figure 4.40: TTR Variability Pattern of Segment 125N04780 under Different Weather Conditions 

4.5.2 TTR Variability Pattern under Different Weather Conditions: Case 2 

The PTIs of segment 125N04788 and 125-04788 under different weather conditions are 

shown in Figure 4.41 and Figure 4.42 below. Similar to case 1, the PTIs under rain condition 

have obvious higher values than those under normal condition throughout the day. And the 

PTIs under the snow/ice/fog condition are also higher than the PTIs under normal condition 

throughout the day and demonstrates unique variability pattern. 

 

 
Figure 4.41: TTR Variability Pattern of Segment 125N04788 under Different Weather Conditions 
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Figure 4.42: TTR Variability Pattern of Segment 125-04788 under Different Weather Conditions 

4.5.3 TTR Variability Pattern under Different Weather Conditions: Case 3 

The PTIs of segment 125N04784 and 125N04785 under different weather conditions are 

shown in Figure 4.43 and Figure 4.44 below. Similar to case 1 and 2, the PTIs under rain 

condition have obvious higher values than those under normal condition throughout the day. 

And the PTIs under the snow/ice/fog condition is also higher than the PTIs under normal 

condition throughout the day and demonstrates unique variability pattern. 

 
Figure 4.43: TTR Variability Pattern of Segment 125N04784 under Different Weather Conditions 
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Figure 4.44: TTR Variability Pattern of Segment 125N04784 under Different Weather Conditions 

4.5.4 TTR Variability Pattern under Different Weather Conditions: Case 4 

The PTIs of segment 125-04790 and 125N04791 under different weather conditions are 

shown in Figure 4.45 and Figure 4.46 below. In more detail, the PTIs under rain condition 

have higher values than normal condition but not increase significantly. However, the PTIs 

under the snow/ice/fog condition is much higher than the PTIs under normal condition 

throughout the day. This result shows the adverse weather like snow, fog and ice can affect 

the traffic condition of the segment significantly, and the traffic congestion becomes more 

frequent no matter when. 

 
Figure 4.45: TTR Variability Pattern of Segment 125-04790 under Different Weather Conditions 
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Figure 4.46: TTR Variability Pattern of Segment 125N04791 under Different Weather Conditions 

4.6 Summary 

This chapter describes the analysis results of TTR variability patterns. The analysis 

results can give a clear picture of the TTR characteristics on different DOW and under different 

weather conditions. 
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Chapter 5.  TTR Prediction 

5.1 Introduction 

The chapter introduces the TTR prediction methodology developed and utilized in this 

study. The following sections are organized as follows. Section 5.2 presents the TTR prediction 

model. Section 5.3 shows the analysis of the TTR prediction results. Finally, section 5.4 

concludes this chapter with a summary. 

5.2 TTR Prediction Model 

5.2.1 Linear Regression Model 

Previous studies displayed numerous forecasting techniques of travel-time prediction such as 

regression methods and time series estimation methods. However, very few of them focus on 

the prediction of TTR, which is a long-term index of a segment. This section introduces a 

linear regression based TTR prediction method using the historical TTR data collected in five 

years (2011 to 2015) to predict the TTR in the year 2016, then compare the prediction result 

with the historical average value in five years and the 2016 ground truth data. 

In order to predict the TTR in the year 2016, the input data is the historical PTI values of the 

selected segment in five years.  The linear regression model is utilized in this study to predict 

the PTI in the year 2016. The linear regression equation is: 

𝑦𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑋 

Where 

𝑦𝑖 = PTI value of segment i, 

𝛽0𝑖= Constant of the model of segment i, 

𝛽1𝑖= Estimated coefficient of the model of segment i, 

X = Year 

With the application of linear regression prediction model, the TTR values on each segment 

in the year 2016 are predicted both under all conditions and with the consideration of DOW. 

5.2.2 Time Series Model 

Exponential smoothing (ETS) model is a commonly used method in time series analysis and 

has been widely adopted in traffic forecasting for decades. The ETS model is an intuitive 

forecasting method that weights the observed time series unequally (Li et al., 2008). Recent 

observations are weighted more heavily than remote observations. The ETS equation 

(Gardner and McKenzie, 1985) is shown as follows: 

𝑆𝑡 = 𝛼 ∙ 𝑥𝑡 + (1 − 𝛼) ∙ 𝑆𝑡−1 
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where 

𝑆𝑡 = The output of the exponential smoothing algorithm, 

α = Smoothing factor, and 0 < α < 1, 

𝑋𝑡= The raw data sequence 

Based on the historical travel time data, the PTIs from Monday to Sunday in each year and 

the PTIs of each month can be calculated. Those values can be used as the input to the 

exponential smoothing model. The ETS model is utilized in this study to predict the PTIs 

from Monday to Sunday and the PTIs in each month in the year 2015.  

5.3 TTR Prediction Results 

5.3.1 TTR Prediction Results under All Conditions 

Figures 5.1 and 5.2 below show the comparison of the prediction results, including the 

historical average PTIs and the actual PTIs in the year 2016 on segment 125-04779 and 

segment 125N04780, respectively. The result in Table 5.1 shows: For the two segments with 

PM peak characteristics, the prediction model can provide a reliable prediction with the 

average percentage errors being 5.65% and 7.50%, respectively. 

 
Figure 5.1: Prediction Result of Segment 125-04779 
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Figure 5.2: Prediction Result of Segment 125N04780 

 

Figure 5.3 and 5.4 below show the comparison of the prediction result, including the 

historical average PTIs and the actual PTIs in the year 2016 on segment 125N04788 and 

segment 125-04788, respectively. The result in Table 5.1 shows: For the two segments with 

AM peak characteristics, the prediction model can provide a reliable prediction with the 

average percentage error being 7.48% and 5.46%, respectively. 
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Figure 5.3: Prediction Result of Segment 125N04788 

 

 
Figure 5.4: Prediction Result of Segment 125-04788 
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125N04784 with the average percentage error being 8.27%. For the segment 125N04785, the 

average percentage error is 18.19%, which may be explained by the unique TTR 

characteristic of that segment during PM peak period in the year 2016. 
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Figure 5.5: Prediction Result of Segment 125N04784 

 

 

 

 

 
Figure 5.6: Prediction Result of Segment 125N04785 
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peak characteristics, the prediction model can provide a reliable prediction with the average 

percentage error being 1.15% and 0.90%, respectively.  

 
Figure 5.7: Prediction Result of Segment 125-04790 

 

 
Figure 5.8: Prediction Result of Segment 125N04791 
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Tmc_Code 
Study 

Case 
Category 

Percentage 

Error 

125-04779 1 total 5.65% 

125N04780 1 total 7.50% 

125N04788 2 total 7.48% 

125-04788 2 total 5.46% 

125N04784 3 total 8.27% 

125N04785 3 total 18.19% 

125-04790 4 total 1.15% 

125N04791 4 total 0.90% 

 

5.3.2 TTR Prediction Results Considering DOW 

Figure 5.9 to Figure 5.12 below show the comparison of the prediction results with the 

consideration of DOW, including the historical average PTIs and the actual PTIs in the year 

2016 on segment 125-04779 and segment 125N04780, respectively. The result in Table 5.2 

shows:  for the segments with PM peak characteristics, the prediction model can provide 

reliable prediction results on weekdays with the errors being 5.19% and 8.23%, respectively. 

The prediction model can also provide reliable prediction results on weekends with the errors 

being 4.16% and 4.67%, respectively. The prediction errors on weekends are lower than 

those on weekdays, which could be explained by lower traffic volume and lower TTR 

variability on weekends. 

 
Figure 5.9: Prediction Result of Segment 125-04779 (Weekdays) 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0
:0

0

1
:1

5

2
:3

0

3
:4

5

5
:0

0

6
:1

5

7
:3

0

8
:4

5

1
0
:0

0

1
1
:1

5

1
2
:3

0

1
3
:4

5

1
5
:0

0

1
6
:1

5

1
7
:3

0

1
8
:4

5

2
0
:0

0

2
1
:1

5

2
2
:3

0

2
3
:4

5

P
T

I

Time of day

Segment 125-04779 (Weekdays)

Prediction results Historical average 2016 Actual



74 

 
Figure 5.10: Prediction Result of Segment 125-04779 (Weekends) 

 

 

 
Figure 5.11: Prediction Result of Segment 125N04780 (Weekdays) 
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Figure 5.12: Prediction Result of Segment 125N04780 (Weekends) 

 

 

Figure 5.13 to Figure 5.16 below show the comparison of the prediction results with the 

consideration of DOW, including the historical average PTIs and the actual PTIs in the year 

2016 on segment 125N04788 and segment 125-04788, respectively. The result in Table 5.2 

shows:  for the segments with AM peak characteristics, the prediction model can provide 

reliable prediction results on weekdays with the errors being 8.08% and 5.43%, respectively. 

The prediction model can also provide reliable prediction results on weekends with the errors 

being 3.05% and 2.53%, respectively. The prediction errors on weekends are lower than 

those on weekdays, which could also be explained by lower traffic volume and lower TTR 

variability on weekends. 
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Figure 5.13: Prediction Result of Segment 125N04788 (Weekdays) 

 

 
Figure 5.14: Prediction Result of Segment 125N04788 (Weekdays) 
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Figure 5.15: Prediction Result of Segment 125-04788 (Weekdays) 

 

 
Figure 5.16: Prediction Result of Segment 125-04788 (Weekends) 
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predictions results on weekdays with the errors being 9.34% and 15.74%, respectively. The 

prediction model can also provide reliable prediction results on weekends with the errors 

being 9.23% and 6.32%, respectively. The prediction errors on weekends are lower than 

those on weekdays, which could also be explained by lower traffic volume and lower TTR 

variability on weekends. 

 
Figure 5.17: Prediction Result of Segment 125N04784 (Weekdays) 

 

 
Figure 5.18: Prediction Result of Segment 125N04784 (Weekends) 
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Figure 5.19: Prediction Result of Segment 125N04785 (Weekdays) 

 

 
Figure 5.20: Prediction Result of Segment 125N04785 (Weekends) 
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shows:  For the segments with no peak characteristics, the prediction model can provide 

reliable prediction results on weekdays with the errors being 1.21% and 1.01%. The 

prediction model can also provide reliable prediction results on weekends with the errors 

being 1.93% and 3.16%. The prediction errors on weekends are higher than those on 

weekdays, which could be explained by under low traffic volume condition, the larger the 

sample size, the more accurate the prediction result is. 

 
Figure 5.21: Prediction Result of Segment 125-04790 (Weekdays) 

 

 
Figure 5.22: Prediction Result of Segment 125-04790 (Weekends) 
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Figure 5.23: Prediction Result of Segment 125N04791 (Weekdays) 

 

 
Figure 5.24: Prediction Result of Segment 125N04791 (Weekends) 
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Table 5.2: Percentage Errors of Prediction Results Considering DOW 

Tmc_Code Study Case Category Percentage Error 

125-04779 1 
weekdays 5.49% 

weekends 4.14% 

125N04780 1 
weekdays 8.23% 

weekends 4.69% 

125N04788 2 
weekdays 8.08% 

weekends 3.05% 

125-04788 2 
weekdays 5.43% 

weekends 2.53% 

125N04784 3 
weekdays 9.37% 

weekends 9.23% 

125N04785 3 
weekdays 15.74% 

weekends 6.32% 

125-04790 4 
weekdays 1.21% 

weekends 1.93% 

125N04791 4 
weekdays 1.01% 

weekends 3.16% 

 

5.3.3 TTR Prediction Results of Specific DOW 

Figures 5.25 and 5.26 below show the comparison of the prediction results from Monday to 

Sunday and the actual PTIs in the year 2015 on segments 125-04779 and 125N04780, 

respectively. The result in Table 5.3 shows:  for the segments showing PM peak 

characteristics, the prediction model can provide reliable prediction results of each DOW 

with the average errors being 8.42% and 8.18%, respectively. The prediction model can 

provide most reliable prediction results on Monday with the errors being 6.54% and 5.72%, 

respectively.  

 
Figure 5.25: Prediction Results of Segment 125-04779 (Monday to Sunday) 
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Figure 5.26: Prediction Results of Segment 125N04780 (Monday to Sunday) 

 

Figures 5.27 and 5.28 below show the comparison of the prediction results from Monday to 

Sunday and the actual PTIs in the year 2015 on segments 125N04788 and 125-04788, 

respectively. The result in Table 5.3 shows:  for the segments showing PM peak 

characteristics, the prediction model can provide reliable prediction results of each DOW 

with the average errors being 9.38% and 7.91%, respectively. The prediction model can 

provide most reliable prediction results on Monday with the errors being 8.07% and 7.55%, 

respectively.  

 
Figure 5.27: Prediction Results of Segment 125N04788 (Monday to Sunday) 
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Figure 5.28: Prediction Results of Segment 125-04788 (Monday to Sunday) 

 

Figures 5.29 and 5.30 below show the comparison of the prediction results from Monday to 

Sunday and the actual PTIs in the year 2015 on segments 125N04784 and 125N04785, 

respectively. The result in Table 5.3 shows:  for the segments showing PM peak 

characteristics, the prediction model can provide prediction results of each DOW with the 

average errors being 17.33% and 21.21%, respectively. The prediction model can provide 

most reliable prediction results on Monday with the errors being 11.52% and 18.06%, 

respectively.  

 
Figure 5.29: Prediction Results of Segment 125N04784 (Monday to Sunday) 
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Figure 5.30: Prediction Results of Segment 125N04785 (Monday to Sunday) 

 

Figures 5.31 and 5.32 below show the comparison of the prediction results from Monday to 

Sunday and the actual PTIs in the year 2015 on segments 125-04790 and 125N04791, 

respectively. The result in Table 5.3 shows:  for the segments showing PM peak 

characteristics, the prediction model can provide prediction results of each DOW with the 

average errors being 2.83% and 2.73%, respectively. The prediction model can provide most 

reliable prediction results on Sunday with the errors being 2.20% and 2.24%, respectively.  

 
Figure 5.31: Prediction Results of Segment 125-04790 (Monday to Sunday) 
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Figure 5.32: Prediction Results of Segment 125N04791 (Monday to Sunday) 

 
Table 5.3: Percentage Errors of Prediction Results (Monday to Sunday) 

Segment 
Study 

Case 

Average Percentage Error 

Mon Tue Wed Thu Fri Sat Sun Average 

125-04779 1 6.54% 11.67% 10.61% 6.95% 9.89% 7.13% 6.18% 8.42% 

125N04780 1 5.72% 11.57% 10.41% 6.31% 8.26% 7.68% 7.33% 8.18% 

125N04788 2 8.07% 8.54% 8.36% 9.21% 8.22% 11.75% 11.48% 9.38% 

125-04788 2 7.55% 7.69% 8.38% 8.83% 8.15% 7.95% 6.83% 7.91% 

125N04784 3 11.52% 14.68% 16.46% 14.64% 16.37% 22.59% 25.05% 17.33% 

125N04785 3 18.06% 18.53% 20.46% 18.53% 18.49% 25.52% 28.86% 21.21% 

125-04790 4 2.77% 4.40% 3.29% 2.56% 2.26% 2.32% 2.20% 2.83% 

125N04791 4 2.84% 3.30% 2.88% 3.08% 2.40% 2.39% 2.24% 2.73% 

 

5.3.4 TTR Prediction Results of Each Month 

Figures 5.33 and 5.34 below show the prediction results of each month and the actual PTIs in 

the year 2015 on segments 125-04779 and 125N04780, respectively. The result in Table 5.4 

shows:  for the segments showing PM peak characteristics, the prediction model can provide 

reliable prediction results with the average errors being 7.68% and 8.83%, respectively. The 

prediction model can provide most reliable prediction results on April with the errors being 

3.90% and 7.03%, respectively.  
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Figure 5.33: Prediction Results of Segment 125-04779 (January to December) 
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Figure 5.34: Prediction Results of Segment 125N04780 (January to December) 

 

 

Figures 5.35 and 5.36 below show the prediction results of each month and the actual PTIs in 

the year 2015 on segments 125N04788 and 125-04788, respectively. The result in Table 5.4 

shows:  for the segments showing AM peak characteristics, the prediction model can provide 

reliable prediction results with the average errors being 8.07% and 7.29%, respectively. The 

prediction model can provide most reliable prediction results on June with the errors being 

5.67% and 4.99%, respectively.  
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Figure 5.35: Prediction Results of Segment 125N04788 (January to December) 
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Figure 5.36: Prediction Results of Segment 125-04788 (January to December) 

 

Figures 5.37 and 5.38 below show the prediction results of each month and the actual PTIs in 

the year 2015 on segments 125N04784 and 125N04785, respectively. The result in Table 5.4 

shows:  for the segments showing double peak characteristics, the prediction model can 

provide prediction results with the average errors being 16.10% and 17.94%, respectively. 

The prediction model can provide most reliable prediction results on May with the errors 

being 13.03% and 13.44%, respectively.  
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Figure 5.37: Prediction Results of Segment 125N04784 (January to December) 
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Figure 5.38: Prediction Results of Segment 125-04785 (January to December) 

 

Figures 5.39 and 5.40 below show the prediction results of each month and the actual PTIs in 

the year 2015 on segments 125-04790 and 125N04791, respectively. The result in Table 5.4 

shows:  for the segments showing no peak characteristics, the prediction model can provide 

reliable prediction results with the average errors being 2.77% and 3.15%, respectively. The 

prediction model can provide most reliable prediction results on March with the errors being 

1.85% and 2.15%, respectively.  
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Figure 5.39: Prediction Results of Segment 125-04790 (January to December) 
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Figure 5.40: Prediction Results of Segment 125N04791 (January to December) 

 

 

Table 5.4: Percentage Errors of Prediction Results (January to December) 

Segment 
Study 

Case 

Average Percentage Error 

1 2 3 4 5 6 7 8 9 10 11 12 Average 

125-04779 1 6.87% 10.67% 8.15% 3.90% 7.28% 7.31% 5.61% 6.07% 8.49% 6.06% 7.53% 14.23% 7.68% 

125N04780 1 8.19% 9.67% 8.73% 7.03% 9.03% 8.54% 7.96% 8.24% 8.90% 7.14% 7.16% 15.37% 8.83% 

125N04788 2 7.69% 11.04% 6.25% 8.00% 7.10% 5.67% 9.16% 7.76% 6.83% 8.36% 11.28% 7.64% 8.07% 

125-04788 2 6.41% 9.93% 6.20% 6.47% 6.38% 4.99% 6.30% 7.22% 7.40% 6.92% 11.42% 7.81% 7.29% 

125N04784 3 17.92% 16.72% 15.86% 14.09% 13.03% 17.84% 12.56% 19.04% 15.90% 16.49% 12.11% 21.66% 16.10% 

125N04785 3 14.08% 14.57% 14.69% 12.84% 13.44% 24.64% 16.19% 25.41% 16.02% 17.87% 20.27% 25.21% 17.94% 

125-04790 4 1.79% 5.64% 1.85% 2.15% 2.65% 1.70% 2.01% 1.82% 4.54% 2.37% 3.88% 2.84% 2.77% 

125N04791 4 2.68% 5.81% 2.15% 2.48% 2.16% 2.36% 2.49% 2.31% 4.56% 3.42% 3.77% 3.63% 3.15% 
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5.4 Summary 

This chapter describes the TTR prediction methodology based on the long-term historical 

TTR data. The following conclusions can be made: The prediction performs best under no peak 

(low traffic volume) condition and has highest error rates under the double-peak condition. In 

most cases, the prediction results on weekends are better than the prediction results on weekdays. 
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Chapter 6.  Summary 

6.1 Introduction 

The chapter summarizes the results achieved in this study. The following sections are 

organized as follows. Section 6.2 describes the summary of the key results. Section 6.3 

concludes this chapter with the discussion of future research directions.  

6.2 Summary of Key Results 

With the analysis of the TTR of eight typical segments on the I-77 southbound corridor in 

Charlotte, NC, the TTR variability patterns could be identified under different conditions. Based 

on the historical TTR data collected in five years (2011 to 2015), the TTR in the year 2016 is 

predicted, the TTR of specific DOW and the TTR of each month in the year 2015 are also 

predicted. The information gathered out of this study can be concluded as follows. 

In general, the TTR variability patterns of different segments along the corridor are 

different. Different cases including PM peak only, AM peak only, double-peak and no peak 

should be analyzed separately since they demonstrate different results. The TTR prediction result 

also indicates the TTR of a year could be predicted accurately based on the long-term historical 

TTR data.  

With respect to DOW, the TTR analysis results show that for the segments with 

noticeable peak hour trend, the TTR on weekends are much lower than that on weekdays. The 

TTR prediction results also show that the prediction errors on weekends are lower than those on 

weekdays. For the segments with no peak hour, the TTR on weekends are similar to those on 

weekdays. The TTR prediction results show that the prediction errors on weekends are a little 

higher than those on weekdays. In particular, for the segments under cases 1 and 3 (PM peak 

only and double peak, respectively), the TTR on Friday is the highest. For the segments under 

case 2 (AM peak only), the TTR on Tuesday is the highest. For the segments under case 4 (no 

peak hour), the TTR on each DOW does not significantly change. 

With respect to weather conditions, the TTR analysis results show that the PTIs under 

rain condition have obviously higher values than those under normal condition throughout the 

day. The PTIs under snow/ice/fog condition are also higher than the PTIs under normal condition 

throughout the day with unique variability patterns. 

6.3 Conclusions and Future Research Directions 

In most cases, TTR data are analyzed at the segment level in the short-term, which may 

not be able to account for the TTR variability characteristics for the whole section in the long-

term. This project aims to develop a systematic approach to analyzing TTR of roadway segments 

with different variability patterns along a corridor in the long-term. In this project, a number of 

influential factors are considered when analyzing TTR, including time of day, day of week, year, 

segment location and weather. A simple linear regression model and a time-series model are 

developed and used to predict the TTR on a freeway corridor, and acceptable results are 

achieved. 
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The methodology and results of this study can be helpful for the TTR modeling related 

work in the real world. However, with the limited amount of data, the impacts of accidents and 

roadworks on TTR are not discussed in this study. In the future, the impacts of these variables 

will be studied if the data can be made available. Spatial relationships between each segment 

along the corridor and their impacts on the TTR will also be investigated. Furthermore, the TTR 

analysis will be conducted at a network level and relevant characteristics will be examined in 

detail. 

 



98 

 

References 

1. Albert, L. P. (2000), Development and validation of an areawide congestion index using 

Intelligent Transportation Systems data. Doctoral dissertation, Texas A&M University, 

College Station, Texas. 

2. Barkley, T., Hranac, R. and Petty, K. (2012), “Relating Travel Time Reliability and 

Nonrecurrent Congestion with Multistate Models.” Transportation Research Record: 

Journal of the Transportation Research Board, 2278, pp. 13-20. 

3. California. (1998), 1998 California Transportation Plan: Transportation System Performance 

Measures: Final Report. Transportation System Information Program, California Department 

of Transportation. 

4. Cambridge Systematics, Inc. (1998), Multimodal Corridor and Capacity Analysis Manual. 

NCHRP Report 399, Transportation Research Board of the National Academies, National 

Research Council, Washington, D.C. 

5. Cambridge Systematics, Inc., Dowling Associates, Inc., System Metrics Group, Inc., and 

Texas Transportation Institute (2008), Cost-Effective Performance Measures for Travel Time 

Delay, Variation, and Reliability. NCHRP Report 618, Transportation Research Board of the 

National Academies, Washington, D.C. 

6. Cambridge Systematics, Inc., High Street Consulting Group, TransTech Management, Inc., 

Spy Pond Partners, and Ross & Associates (2009), Performance Measurement Framework 

for Highway Capacity Decision Making. No. SHRP 2 Report S2-C02-RR, Transportation 

Research Board of the National Academies, Washington, D.C. Accessed on December 13, 

2017, 

Available at: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_399.pdf.  

7. Charles, E. E. (1997), An Introduction to Reliability and Maintainability 

Engineering. Edition McGraw Hill. 

8. Charlotte, C., Helenea, L.M. and Sandra, B. (2017), “Empirical Estimation of the Variability 

of Travel Time.” Transportation Research Procedia, 25, pp. 2769-2783. 

9. Chen, M., Yu, G., Chen, P., and Wang, Y. (2017), “A Copula-Based Approach for 

Estimating the Travel Time Reliability of Urban Arterial.” Transportation Research Part C: 

Emerging Technologies, 82, pp. 1-23.  

10. Chen, P., Tong, R., Lu, G., and Wang, Y. (2018). “Exploring Travel Time Distribution and 

Variability Patterns Using Probe Vehicle Data: Case Study in Beijing.” Journal of Advanced 

Transportation, Article 3747632. 

11. Chen, X. M., Chen, X., Zheng, H., and Chen, C. (2017). “Understanding network travel time 

reliability with on-demand ride service data.” Frontiers of Engineering Management, 4(4), 

pp. 388-398. 

12. Clark, S. and Watling, D. (2005), “Modelling Network Travel Time Reliability Under 

Stochastic Demand.” Transportation Research Part B: Methodological, 39(2), pp. 119-140. 

13. Dowling, R. G., Skabardonis, A., Margiotta, R. A. and Hallenbeck, M. E. (2009), “Reliability 

Breakpoints on Freeways.” Transportation Research Board 88th Annual Meeting, 

Washington D.C., No. 09-0813 

http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rpt_399.pdf


99 

14. Elefteriadou, L. and Cui, X. (2007), “A Framework for Defining and Estimating Travel Time 

Reliability.” Transportation Research Board 86th Annual Meeting, Washington D.C., No. 07-

1675. 

15. Eliasson, J. (2007), “The Relationship Between Travel Time Variability and Road 

Congestion.” 11th World Conference on Transport Research, Berkeley, California. 

16. Emam, E., and Ai-Deek, H. (2006), “Using Real-Life Dual-Loop Detector Data to Develop 

New Methodology for Estimating Freeway Travel Time Reliability.” Transportation 

Research Record: Journal of the Transportation Research Board, 1959, pp. 140-150. 

17. Fan, W., and Gong, L., (2017), Developing a Systematic Approach to Improving Bottleneck 

Analysis in North Carolina. North Carolina DOT. 

Available at: https://connect.ncdot.gov/projects/research/RNAProjDocs/2016-

10%20Final%20Report.pdf 

18. Florida Department of Transportation. (2011), The Florida Reliability Method in Florida’s 

Mobility Performance Measures Program.  

Available at: http://www.floridampms.com/pdf/trbmpmpaper16.pdf 

19. Florida Department of Transportation. (2011). SIS Bottleneck Study (Technical 

Memorandum No. 2‐Methodology to Identify Bottlenecks).  

Available at: 

http://www.dot.state.fl.us/planning/systems/programs/mspi/pdf/Tech%20Memo%202.pdf .  

20. Gardner Jr, E.S. and McKenzie, E.D. (1985). “Forecasting Trends in Time Series”. 

Management Science, 31(10), pp.1237-1246. 

21. Guo, F., Rakha, H., and Park, S. (2010), “Multistate Model for Travel Time 

Reliability.” Transportation Research Record: Journal of the Transportation Research 

Board, 2188, pp. 46-54. 

22. Hainen, A., Wasson, J., Hubbard, S., Remias, S., Farnsworth, G., and Bullock, D. (2011), 

“Estimating Route Choice and Travel Time Reliability with Field Observations of Bluetooth 

Probe Vehicles.” Transportation Research Record: Journal of the Transportation Research 

Board, 2256, pp. 43-50. 

23. Hojati, A. T., Ferreira, L., Washington, S., Charles, P., and Shobeirinejad, A. (2016), 

“Modelling the Impact of Traffic Incidents on Travel Time Reliability.” Transportation 

research part C: emerging technologies, 65, pp. 49-60. 

24. Javid, R. J., and Javid, R. J. (2017), “A Framework for Travel Time Variability Analysis 

Using Urban Traffic Incident Data.” IATSS Research, 42(1), pp.30-38. 

25. Kamga, C., and Yazıcı, M. A. (2014), “Temporal and Weather-Related Variation Patterns of 

Urban Travel Time: Considerations and Caveats for Value of Travel Time, Value of 

Variability, and Mode Choice Studies.” Transportation Research Part C: Emerging 

Technologies, 45, pp. 4-16. 

26. Kim, J. (2014), Travel Time Reliability of Traffic Networks: Characterization, Modeling and 

Scenario-based Simulation. Doctoral dissertation, Northwestern University, Evanston, 

Illinois 

27. Kwon, J., Barkley, T., Hranac, R., Petty, K. and Compin, N. (2011), “Decomposition of 

Travel Time Reliability into Various Sources: Incidents, Weather, Work Zones, Special 

Events, and Base Capacity.” Transportation Research Record: Journal of the Transportation 

Research Board, 2229, pp. 28-33. 



100 

28. Lei, F., Wang, Y., Lu, G., and Sun, J. (2014), “A Travel Time Reliability Model of Urban 

Expressways with Varying Levels of Service.” Transportation Research Part C: Emerging 

Technologies, 48, pp. 453-467. 

29. Li, Z., Elefteriadou, L. and Kondyli, A. (2016), “Quantifying Weather Impacts on Traffic 

Operations for Implementation into A Travel Time Reliability Model.” Transportation 

Letters: The International Journal of Transportation Research, 8(1), pp. 47-59. 

30. Li, Z., Yu, H., Liu, C. and Liu, F. (2008), “An Improved Adaptive Exponential Smoothing 

Model for Short-Term Travel Time Forecasting of Urban Arterial Street.” Acta Automatica 

Sinica, 34(11), pp.1404-1409. 

31. Lomax, T., D. Schrank, S. Turner, and R. Margiotta. (2003), Selecting Travel Time 

Reliability Measures. Texas Transportation Institute.  

Available at: https://static.tti.tamu.edu/tti.tamu.edu/documents/TTI-2003-3.pdf.  

32. Lomax, T., Turner, S., Shunk, G., Levinson, H. S., Pratt, R. H., Bay, P. N., and Douglas, G. 

B. (1997), Quantifying Congestion, Volume 1: Final Report. NCHRP Report 398, 

Transportation Research Board of the National Academies, Washington, D.C. 

Available at: http://onlinepubs. trb. org/onlinepubs/nchrp/nchrp_rpt_398. pdf. 

33. Martchouk, M., Mannering, F., and Bullock, D. (2010), “Analysis of Freeway Travel Time 

Variability Using Bluetooth Detection.” Journal of Transportation Engineering, 137(10), pp. 

697-704. 

34. McLeod, D. S., Elefteriadou, L., and Jin, L. (2012), “Travel Time Reliability as a 

Performance Measure: Applying Florida's Predictive Model to an Entire Freeway 

System.” Institute of Transportation Engineers. ITE Journal, 82(11), pp. 43. 

35. Ng, M., and Waller, S. T. (2010), “A Computationally Efficient Methodology to Characterize 

Travel Time Reliability Using the Fast Fourier Transform.” Transportation Research Part B: 

Methodological, 44(10), pp. 1202-1219. 

36. North Carolina DMV. (2016), North Carolina 2016 Traffic Crash Facts 

Available at: 

https://connect.ncdot.gov/business/DMV/DMV%20Documents/2016%20Crash%20Facts.pdf 

37. Peer, S., Koopmans, C. C., and Verhoef, E. T. (2012), “Prediction of Travel Time Variability 

for Cost-Benefit Analysis.” Transportation Research Part A: Policy and Practice, 46(1), pp. 

79-90. 

38. Pu, W. (2011), “Analytic Relationships Between Travel Time Reliability 

Measures.” Transportation Research Record: Journal of the Transportation Research Board, 

2254, pp. 122-130. 

39. Recker, W., Chung, Y., Park, J., Wang, L., Chen, A., Ji, Z. ... and Oh, J. S. (2005), 

Considering Risk-taking Behavior in Travel Time Reliability. California Partners for 

Advanced Transit and Highways (PATH).  

Available at: http://caltrans.ca.gov/newtech/researchreports/2002-2006/2005/to_4110.pdf 

40. Saberi, M., and Bertini, R. L. (2010), “Beyond Corridor Reliability Measures: Analysis of 

Freeway Travel Time Reliability at the Segment Level for Hot Spot Identification.” 

Transportation Research Board 89th Annual Meeting. Washington D.C., US. No. 10-2341. 

41. Schrank, D., Eisele, B., Lomax, T., and Bak, J. (2015), 2015 Urban Mobility Scorecard. 

Texas A&M Transportation Institute, INRIX Inc.  

Available at: http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/mobility-scorecard-

2015.pdf. 

https://static.tti.tamu.edu/tti.tamu.edu/documents/TTI-2003-3.pdf
https://connect.ncdot.gov/business/DMV/DMV%20Documents/2016%20Crash%20Facts.pdf


101 

42. Schroeder, B., Rouphail, N., and Aghdashi, S. (2013), “Deterministic Framework and 

Methodology for Evaluating Travel Time Reliability on Freeway Facilities.” Transportation 

Research Record: Journal of the Transportation Research Board, 2396, pp. 61-70. 

43. Shao, H., Lam, W. H., Tam, M. L., and Yuan, X. M. (2008), “Modelling Rain Effects on 

Risk-Taking Behaviours of Multi-User Classes in Road Networks with Uncertainty.” Journal 

of Advanced Transportation, 42(3), pp. 265-290. 

44. Sohn, K., and Kim, D. (2009), “Statistical Model for Forecasting Link Travel Time 

Variability.” Journal of Transportation Engineering, 135(7), pp. 440-453. 

45. Texas Transportation Institute, and Cambridge Systems, Inc. (2010), Travel Time Reliability: 

Making It There on Time, All the Time. FHWA.  

Available at: http://www.ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.html.  

46. Tsapakis, I., Cheng, T., and Bolbol, A. (2013). “Impact of weather conditions on 

macroscopic urban travel times.” Journal of Transport Geography, 28, pp. 204-211. 

47. Tu, H. (2008), Monitoring Travel Time Reliability on Freeways. Doctoral dissertation, Delft 

University of Technology, Delft, Netherlands. 

48. Tu, H., Li, H., Van Lint, H., Knoop, V., and Sun, L. (2013). “Macroscopic Travel Time 

Reliability Diagrams for Freeway Networks.” Transportation Research Record: Journal of 

the Transportation Research Board, 2396, pp. 19-27. 

49. Turner, S. M., Best, M. E., and Schrank, D. L. (1996), Measures of Effectiveness for Major 

Investment Studies. No. SWUTC/96/467106-1, Transportation Research Board of the 

National Academies, Washington, D.C.  

Available at: http://tti.tamu.edu/documents/467106-1.pdf 

50. Van Lint, J. and Van Zuylen, H. (2005), “Monitoring and Predicting Freeway Travel Time 

Reliability: Using Width and Skew of Day-To-Day Travel Time Distribution.” 

Transportation Research Record: Journal of the Transportation Research Board, 191, pp. 

54-62. 

51. Vandervalk, A., Louch, H., Guerre, J., and Margiotta, R. (2014), Incorporating Reliability 

Performance Measures into the Transportation Planning and Programming Processes: 

Technical Reference. No. SHRP 2 Report S2-L05-RR-3, Transportation Research Board of 

the National Academies, Washington, D.C. 

Available at: 

https://www.camsys.com/sites/default/files/publications/SHRP2prepubL05Report.pdf.  

52. Wang, Z., Goodchild, A., and McCormack, E. (2017), “A Methodology for Forecasting 

Freeway Travel Time Reliability Using GPS Data.” Transportation Research Procedia, 25, 

pp. 842-852. 

53. Weng, J., Liu, L., and Rong, J. (2013), “Impacts of snowy weather conditions on expressway 

traffic flow characteristics.” Discrete dynamics in nature and society, 2013. 

54. Wolniak, M., and Mahapatra, S. (2014), “Data- and Performance-Based Congestion 

Management Approach for Maryland Highways.” Transportation Research Record: Journal 

of the Transportation Research Board, 2420, pp. 23-32. 

55. Yang, S. (2016), Estimating Freeway Travel Time Reliability for Traffic Operations and 

Planning. Doctoral Dissertation, University of Arizona, Tucson, Arizona. 

56. Yang, S., Malik, A., and Wu, Y. J. (2014), “Travel Time Reliability Using the Hasofer-Lind-

Rackwitz-Fiessler Algorithm and Kernel Density Estimation.” Transportation Research 

Record: Journal of the Transportation Research Board, 2442, pp. 85-95. 

http://www.ops.fhwa.dot.gov/publications/tt_reliability/TTR_Report.html
http://tti.tamu.edu/documents/467106-1.pdf
https://www.camsys.com/sites/default/files/publications/SHRP2prepubL05Report.pdf


102 

57. Yazici, M., Kamga, C. and Mouskos, K. (2012), “Analysis of Travel Time Reliability in New 

York City Based on Day-Of-Week and Time-Of-Day Periods.” Transportation Research 

Record: Journal of the Transportation Research Board, 230, pp. 83-95. 

58. Zhao, L., and Chien, S. I. J. (2012). Analysis of Weather Impact on Travel Speed and Travel 

Time Reliability. In CICTP 2012: Multimodal Transportation Systems—Convenient, Safe, 

Cost-Effective, Efficient. 

59. Zheng, F., Li, J., van Zuylen, H., Liu, X., and Yang, H. (2017), “Urban Travel Time 

Reliability at Different Traffic Conditions.” Journal of Intelligent Transportation Systems, 

22(2), pp. 106-120.



103 

Appendix A: PTIs of Each Segment                                     

TMC 

Code 
Year Time Period Average PTI Rating 

125N04776 2011 AM Peak 1.06266 reliable 

  PM Peak 1.134655 reliable 

 2012 AM Peak 1.040118 reliable 

  PM Peak 1.397752 reliable 

 2013 AM Peak 1.036858 reliable 

  PM Peak 1.59996 unreliable 

 2014 AM Peak 1.049939 reliable 

  PM Peak 1.901685 unreliable 

 2015 AM Peak 1.056985 reliable 

  PM Peak 2.262251 unreliable 

125-04776 2011 AM Peak 1.046534 reliable 

  PM Peak 1.061458 reliable 

 2012 AM Peak 1.051751 reliable 

  PM Peak 1.162759 reliable 

 2013 AM Peak 1.045789 reliable 

  PM Peak 1.310971 reliable 

 2014 AM Peak 1.076656 reliable 

  PM Peak 1.600031 unreliable 

 2015 AM Peak 1.075308 reliable 

  PM Peak 1.915216 unreliable 

125N04777 2011 AM Peak 1.068902 reliable 

  PM Peak 1.084726 reliable 

 2012 AM Peak 1.043128 reliable 

  PM Peak 1.225618 reliable 

 2013 AM Peak 1.040042 reliable 

  PM Peak 1.393853 reliable 

 2014 AM Peak 1.054416 reliable 

  PM Peak 1.764437 unreliable 

 2015 AM Peak 1.056168 reliable 

  PM Peak 2.011691 unreliable 

125-04777 2011 AM Peak 1.076099 reliable 

  PM Peak 1.104977 reliable 

 2012 AM Peak 1.052621 reliable 

  PM Peak 1.114886 reliable 

 2013 AM Peak 1.052491 reliable 

  PM Peak 1.223671 reliable 
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 2014 AM Peak 1.069147 reliable 

  PM Peak 1.447633 reliable 

 2015 AM Peak 1.07648 reliable 

  PM Peak 1.515755 unreliable 

125N04778 2011 AM Peak 1.086752 reliable 

  PM Peak 1.156643 reliable 

 2012 AM Peak 1.066693 reliable 

  PM Peak 1.157025 reliable 

 2013 AM Peak 1.055256 reliable 

  PM Peak 1.239177 reliable 

 2014 AM Peak 1.078932 reliable 

  PM Peak 1.439039 reliable 

 2015 AM Peak 1.088883 reliable 

  PM Peak 1.579197 unreliable 

125-04778 2011 AM Peak 1.087115 reliable 

  PM Peak 1.671404 unreliable 

 2012 AM Peak 1.073568 reliable 

  PM Peak 1.652765 unreliable 

 2013 AM Peak 1.061116 reliable 

  PM Peak 1.734116 unreliable 

 2014 AM Peak 1.091238 reliable 

  PM Peak 1.887138 unreliable 

 2015 AM Peak 1.104677 reliable 

  PM Peak 2.035405 unreliable 

125N04779 2011 AM Peak 1.073752 reliable 

  PM Peak 1.951631 unreliable 

 2012 AM Peak 1.047247 reliable 

  PM Peak 1.918434 unreliable 

 2013 AM Peak 1.045836 reliable 

  PM Peak 2.049454 unreliable 

 2014 AM Peak 1.073958 reliable 

  PM Peak 2.306239 unreliable 

 2015 AM Peak 1.104735 reliable 

  PM Peak 2.606662 
extremely 

unreliable 

125-04779 2011 AM Peak 1.087547 reliable 

  PM Peak 1.996295 unreliable 

 2012 AM Peak 1.068872 reliable 

  PM Peak 1.980436 unreliable 

 2013 AM Peak 1.059216 reliable 

  PM Peak 2.078437 unreliable 

 2014 AM Peak 1.087439 reliable 

  PM Peak 2.336153 unreliable 



105 

 2015 AM Peak 1.112278 reliable 

  PM Peak 2.701556 
extremely 

unreliable 

125N04780 2011 AM Peak 1.096659 reliable 

  PM Peak 2.450353 unreliable 

 2012 AM Peak 1.069158 reliable 

  PM Peak 2.427968 unreliable 

 2013 AM Peak 1.064913 reliable 

  PM Peak 2.486232 unreliable 

 2014 AM Peak 1.095065 reliable 

  PM Peak 2.692032 
extremely 

unreliable 

 2015 AM Peak 1.121108 reliable 

  PM Peak 3.188528 
extremely 

unreliable 

125-04780 2011 AM Peak 1.103459 reliable 

  PM Peak 2.228185 unreliable 

 2012 AM Peak 1.080457 reliable 

  PM Peak 2.18364 unreliable 

 2013 AM Peak 1.078116 reliable 

  PM Peak 2.299837 unreliable 

 2014 AM Peak 1.109081 reliable 

  PM Peak 2.585503 
extremely 

unreliable 

 2015 AM Peak 1.130885 reliable 

  PM Peak 3.203165 
extremely 

unreliable 

125N04781 2011 AM Peak 1.092669 reliable 

  PM Peak 2.231417 unreliable 

 2012 AM Peak 1.069801 reliable 

  PM Peak 2.200292 unreliable 

 2013 AM Peak 1.068666 reliable 

  PM Peak 2.315463 unreliable 

 2014 AM Peak 1.095516 reliable 

  PM Peak 2.548419 
extremely 

unreliable 

 2015 AM Peak 1.128063 reliable 

  PM Peak 3.239673 
extremely 

unreliable 

125-04781 2011 AM Peak 1.09313 reliable 

  PM Peak 1.986998 unreliable 

 2012 AM Peak 1.077524 reliable 

  PM Peak 2.020843 unreliable 

 2013 AM Peak 1.071323 reliable 
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  PM Peak 2.141087 unreliable 

 2014 AM Peak 1.105254 reliable 

  PM Peak 2.447723 unreliable 

 2015 AM Peak 1.137644 reliable 

  PM Peak 3.244007 
extremely 

unreliable 

125N04782 2011 AM Peak 1.108528 reliable 

  PM Peak 2.093219 unreliable 

 2012 AM Peak 1.098034 reliable 

  PM Peak 2.182033 unreliable 

 2013 AM Peak 1.086291 reliable 

  PM Peak 2.3169 unreliable 

 2014 AM Peak 1.128052 reliable 

  PM Peak 2.52807 
extremely 

unreliable 

 2015 AM Peak 1.174823 reliable 

  PM Peak 3.268016 
extremely 

unreliable 

125-04782 2011 AM Peak 1.139576 reliable 

  PM Peak 1.946367 unreliable 

 2012 AM Peak 1.149697 reliable 

  PM Peak 2.006649 unreliable 

 2013 AM Peak 1.140428 reliable 

  PM Peak 2.217501 unreliable 

 2014 AM Peak 1.200691 reliable 

  PM Peak 2.466736 unreliable 

 2015 AM Peak 1.311312 reliable 

  PM Peak 3.219905 
extremely 

unreliable 

125N04783 2011 AM Peak 1.201061 reliable 

  PM Peak 2.248207 unreliable 

 2012 AM Peak 1.224649 reliable 

  PM Peak 2.272389 unreliable 

 2013 AM Peak 1.30275 reliable 

  PM Peak 2.568087 
extremely 

unreliable 

 2014 AM Peak 1.390203 reliable 

  PM Peak 2.889162 
extremely 

unreliable 

 2015 AM Peak 1.621884 unreliable 

  PM Peak 3.754898 
extremely 

unreliable 

125-04783 2011 AM Peak 1.622176 unreliable 
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  PM Peak 3.127658 
extremely 

unreliable 

 2012 AM Peak 1.625492 unreliable 

  PM Peak 3.025465 
extremely 

unreliable 

 2013 AM Peak 1.838214 unreliable 

  PM Peak 3.433248 
extremely 

unreliable 

 2014 AM Peak 1.943838 unreliable 

  PM Peak 3.597916 
extremely 

unreliable 

 2015 AM Peak 2.226752 unreliable 

  PM Peak 4.710018 
extremely 

unreliable 

125N04784 2011 AM Peak 1.59567 unreliable 

  PM Peak 3.099822 
extremely 

unreliable 

 2012 AM Peak 1.747629 unreliable 

  PM Peak 3.336998 
extremely 

unreliable 

 2013 AM Peak 2.005121 unreliable 

  PM Peak 4.040171 
extremely 

unreliable 

 2014 AM Peak 2.33333 unreliable 

  PM Peak 4.088657 
extremely 

unreliable 

 2015 AM Peak 2.774659 
extremely 

unreliable 

  PM Peak 5.453655 
extremely 

unreliable 

125-04784 2011 AM Peak 1.369232 reliable 

  PM Peak 1.552133 unreliable 

 2012 AM Peak 1.562451 unreliable 

  PM Peak 2.042349 unreliable 

 2013 AM Peak 1.856781 unreliable 

  PM Peak 2.891148 
extremely 

unreliable 

 2014 AM Peak 2.117868 unreliable 

  PM Peak 2.877631 
extremely 

unreliable 

 2015 AM Peak 2.648557 
extremely 

unreliable 

  PM Peak 3.750329 
extremely 

unreliable 

125N04785 2011 AM Peak 1.379704 reliable 
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  PM Peak 1.710557 unreliable 

 2012 AM Peak 1.600302 unreliable 

  PM Peak 2.082473 unreliable 

 2013 AM Peak 1.869266 unreliable 

  PM Peak 2.946074 
extremely 

unreliable 

 2014 AM Peak 2.11194 unreliable 

  PM Peak 2.850888 
extremely 

unreliable 

 2015 AM Peak 2.629201 
extremely 

unreliable 

  PM Peak 3.614222 
extremely 

unreliable 

125-04785 2011 AM Peak 1.285555 reliable 

  PM Peak 1.439401 reliable 

 2012 AM Peak 1.486278 reliable 

  PM Peak 1.661656 unreliable 

 2013 AM Peak 1.734608 unreliable 

  PM Peak 2.132752 unreliable 

 2014 AM Peak 2.004696 unreliable 

  PM Peak 2.227338 unreliable 

 2015 AM Peak 2.471819 unreliable 

  PM Peak 2.786519 
extremely 

unreliable 

125N04786 2011 AM Peak 1.185841 reliable 

  PM Peak 1.159869 reliable 

 2012 AM Peak 1.335137 reliable 

  PM Peak 1.207162 reliable 

 2013 AM Peak 1.498675 reliable 

  PM Peak 1.368404 reliable 

 2014 AM Peak 1.784866 unreliable 

  PM Peak 1.461201 reliable 

 2015 AM Peak 2.219247 unreliable 

  PM Peak 1.538909 unreliable 

125-04786 2011 AM Peak 1.126621 reliable 

  PM Peak 1.099779 reliable 

 2012 AM Peak 1.221667 reliable 

  PM Peak 1.083336 reliable 

 2013 AM Peak 1.422795 reliable 

  PM Peak 1.086672 reliable 

 2014 AM Peak 1.663856 unreliable 

  PM Peak 1.138625 reliable 

 2015 AM Peak 2.131713 unreliable 
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  PM Peak 1.12029 reliable 

125N04787 2011 AM Peak 1.130025 reliable 

  PM Peak 1.093594 reliable 

 2012 AM Peak 1.199717 reliable 

  PM Peak 1.083943 reliable 

 2013 AM Peak 1.352796 reliable 

  PM Peak 1.090136 reliable 

 2014 AM Peak 1.517629 unreliable 

  PM Peak 1.126282 reliable 

 2015 AM Peak 1.914607 unreliable 

  PM Peak 1.148775 reliable 

125-04787 2011 AM Peak 1.606986 unreliable 

  PM Peak 1.117596 reliable 

 2012 AM Peak 1.657024 unreliable 

  PM Peak 1.178951 reliable 

 2013 AM Peak 1.766327 unreliable 

  PM Peak 1.243485 reliable 

 2014 AM Peak 1.933891 unreliable 

  PM Peak 1.457737 reliable 

 2015 AM Peak 2.196673 unreliable 

  PM Peak 1.501952 unreliable 

125N04788 2011 AM Peak 1.813729 unreliable 

  PM Peak 1.084947 reliable 

 2012 AM Peak 1.901264 unreliable 

  PM Peak 1.069443 reliable 

 2013 AM Peak 2.094663 unreliable 

  PM Peak 1.113443 reliable 

 2014 AM Peak 2.319554 unreliable 

  PM Peak 1.260783 reliable 

 2015 AM Peak 2.621807 
extremely 

unreliable 

  PM Peak 1.248876 reliable 

125-04788 2011 AM Peak 1.724216 unreliable 

  PM Peak 1.08607 reliable 

 2012 AM Peak 1.70581 unreliable 

  PM Peak 1.056984 reliable 

 2013 AM Peak 2.087728 unreliable 

  PM Peak 1.067835 reliable 

 2014 AM Peak 2.138059 unreliable 

  PM Peak 1.114467 reliable 

 2015 AM Peak 2.62928 
extremely 

unreliable 

  PM Peak 1.128888 reliable 
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125N04789 2011 AM Peak 1.414372 reliable 

  PM Peak 1.132989 reliable 

 2012 AM Peak 1.417439 reliable 

  PM Peak 1.095596 reliable 

 2013 AM Peak 1.614751 unreliable 

  PM Peak 1.101156 reliable 

 2014 AM Peak 1.672655 unreliable 

  PM Peak 1.118785 reliable 

 2015 AM Peak 1.969794 unreliable 

  PM Peak 1.107573 reliable 

125-04789 2011 AM Peak 1.076342 reliable 

  PM Peak 1.058773 reliable 

 2012 AM Peak 1.086131 reliable 

  PM Peak 1.03752 reliable 

 2013 AM Peak 1.191075 reliable 

  PM Peak 1.044097 reliable 

 2014 AM Peak 1.232064 reliable 

  PM Peak 1.053826 reliable 

 2015 AM Peak 1.424449 reliable 

  PM Peak 1.056129 reliable 

125N04790 2011 AM Peak 1.06431 reliable 

  PM Peak 1.059928 reliable 

 2012 AM Peak 1.046646 reliable 

  PM Peak 1.040616 reliable 

 2013 AM Peak 1.069777 reliable 

  PM Peak 1.045092 reliable 

 2014 AM Peak 1.150837 reliable 

  PM Peak 1.05749 reliable 

 2015 AM Peak 1.240532 reliable 

  PM Peak 1.056854 reliable 

125-04790 2011 AM Peak 1.048283 reliable 

  PM Peak 1.053602 reliable 

 2012 AM Peak 1.038412 reliable 

  PM Peak 1.03661 reliable 

 2013 AM Peak 1.042941 reliable 

  PM Peak 1.038357 reliable 

 2014 AM Peak 1.057456 reliable 

  PM Peak 1.046842 reliable 

 2015 AM Peak 1.065615 reliable 

  PM Peak 1.048435 reliable 

125N04791 2011 AM Peak 1.067182 reliable 

  PM Peak 1.065286 reliable 
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 2012 AM Peak 1.059804 reliable 

  PM Peak 1.051838 reliable 

 2013 AM Peak 1.050926 reliable 

  PM Peak 1.0517 reliable 

 2014 AM Peak 1.072386 reliable 

  PM Peak 1.062536 reliable 

 2015 AM Peak 1.073094 reliable 

  PM Peak 1.068278 reliable 

125-04791 2011 AM Peak 1.230269 reliable 

  PM Peak 1.249547 reliable 

 2012 AM Peak 1.22135 reliable 

  PM Peak 1.237473 reliable 

 2013 AM Peak 1.229089 reliable 

  PM Peak 1.280499 reliable 

 2014 AM Peak 1.164035 reliable 

  PM Peak 1.077647 reliable 

 2015 AM Peak 1.058425 reliable 

  PM Peak 1.065829 reliable 

 


